- Midterm 2 date: possibly ind week of Nov. after we finish $\operatorname{ch} 3$ in stein ($\approx \operatorname{ch} 4$ of Ahlfors).

Q: is it possible to have fractional winding number?

- recall the $n(r, a)=\frac{1}{2 \pi i} \oint \frac{1}{z-a} d z$
$(\cdot a)^{r}$ where curve r does not pass through a.

Ex:

$$
I=\lim _{\varepsilon \rightarrow 0} \frac{1}{2 \pi i} \int_{C_{\varepsilon}} \frac{1}{z} d z=\frac{1}{2 \pi i} \int_{\rightarrow \rightarrow} \frac{1}{z} d z
$$

it turns out $I=\frac{1}{2}$.

$$
\frac{1}{2 \pi i} \int_{C} \frac{1}{z} d z=-\frac{1}{2}
$$

$\gamma=$ circle
How does
I $n(r, z)$ depends on z as z moves around ?

- For z inside $\gamma, \quad n(r, z)=1$
- For z outside $r, \quad n(r, z)=0$,
- so heuristically, for z on γ, we have

$$
n(r, z)=\frac{1}{2} .
$$

[Challenge question: can $n(r, z)$ be other]
 frations $p, \frac{1}{m}$?
33 Ch. Stein. Classification of singularity and meromopher function.

Types of singularities:

- removable singularity.
, pole.
\therefore pole at $z_{0} \Leftrightarrow\left(z-z_{0}\right)^{m} f(z)$
is holomorphic for m large enough.
(all other kinds)
Thu 3,1. (Removable Singularity).
Suppose f is hol'c in an open set Ω, except possibly at a point $z_{0} \in \Omega$, If f is bounded on $\Omega-\left\{z_{0}\right\}$. then Z_{0} is a removable singularity.

Observations: if f cause extended to z_{0},
 what value of f has to be at z_{0} ?
a Since f is continuous, then $f\left(z_{0}\right)=\lim _{z \rightarrow z_{0}} f(z)$,
I But at this moment, without knowing f is hol'c at z. $\lim _{z \rightarrow t_{0}} f(z)$ might not exist. i.e. has has different value as $z \rightarrow z_{0}$.

- If f can be extended hulomophically to Z_{0}, then $f\left(z_{0}\right)=\frac{1}{2 \pi i} \oint \frac{f(\omega)}{\omega-z_{0}} d \omega$. has to be true. $C_{\varepsilon}\left(Z_{0}\right)$

Can we declare that,
(1) prot back the value $\frac{1}{2 \pi i} \oint_{C_{L}(z)} \frac{f(\omega)}{\omega-z_{0}} d \omega$,. "I $\left(z_{0}\right)$ then declare done?
Problem: $I\left(z_{0}\right)$ may not be $\lim _{z \rightarrow z_{0}} f(z)$.

Pf: Fix a small circle $C=C_{\varepsilon}\left(Z_{0}\right)$ around Z_{0}, so that $\overline{D_{\varepsilon}\left(z_{0}\right)} \subset \Omega$.

Define a function in $D_{\varepsilon}\left(z_{0}\right)$

$$
g(z):=\frac{1}{2 \pi i} \oint \frac{f(w)}{w-7} d w
$$

Now, suffice to prove that $g(z)=f(z), \quad \forall z \in D_{\varepsilon}^{x}\left(z_{0}\right)$

Deform C to be 2 circles, one around z_{0}, one around z.

$C_{\delta}\left(z_{0}\right)$ and $C_{\delta}(z)$

$$
g(z)=\frac{1}{2 \pi i} \int_{C_{\delta\left(z_{0}\right)}} \frac{f(\omega)}{\omega-z} d w+\frac{1}{2 \pi i} \int_{C_{\delta}(z)} \frac{f(\omega)}{\omega-z} d \omega .
$$

Claim,

$$
\begin{aligned}
& \xrightarrow{\delta \rightarrow 0} 0+f(z) . \\
& \left|\int_{C_{\delta}\left(z_{0}\right)} \frac{f(\omega)}{\omega-z} d \omega\right| \leqslant \sup _{\omega \in C_{\delta\left(z_{0}\right)}\left|\frac{f(\omega)}{\omega-z}\right| \cdot(2 \pi \delta) \xrightarrow{\text { as } \delta>0 .}} \quad
\end{aligned}
$$

bounded function

$$
\text { in } D_{S}\left(Z_{0}\right)
$$

Cor: $f(z)$ has a pole at z_{0}

$$
\Leftrightarrow \quad|f(z)| \rightarrow \infty \quad \text { as } \quad z \rightarrow z_{0}
$$

Pf: \Rightarrow By definition, $f(z)$ has a pole at z_{0} means, " $\exists F(z) \quad h_{0}{ }^{\prime} c$ at nhl of $z_{0}, \quad F(z)=\frac{1}{f(z)}$ in $D_{\varepsilon}^{x}\left(z_{0}\right)$,
and $F\left(z_{0}\right)=0$ " " $\Rightarrow \frac{1}{|f(z)|} \rightarrow 0$, as $z \rightarrow Z_{0}$. , hence.
$\frac{1}{|f(z)|} \rightarrow 0$ as $z \rightarrow z_{0}, \Leftrightarrow|f(z)| \rightarrow \infty$ as $z \rightarrow z_{0}$.
$f(z) \mid \rightarrow \infty$
\Leftarrow as $z \rightarrow z_{0}, \stackrel{1}{|f(z)|} \rightarrow 0^{\frac{1}{f(z)}} \rightarrow 0$
\Leftarrow in particular.
$\frac{1}{f(z)}$ is bounded in a deleted nohd of z_{0}.
Hence, by the tho, we know $\frac{1}{f(z)}$ can be extended to Z_{0}, and the value of extension of $\frac{1}{f}$ at Z_{0} has to be zero, by continuity,

Observation: this corollary says that, if $|f(z)| \rightarrow \infty$ as $z \rightarrow z_{\theta}$, then z_{0} cannot be an essential singularity.

Consider: $f(z)=e^{\frac{1}{z}}$ near $z=0$,
C. if $z \rightarrow 0$ along positive veal direction, $z=r . \quad(r>0)$ then $e^{\frac{1}{r}} \rightarrow \infty$

- if $z \rightarrow 0$ along negative real dilation, $z=-r$.

$$
e^{-\frac{1}{r}} \stackrel{\prime}{\approx e^{-\infty \prime \prime}} \rightarrow 0 \quad \text { as } r \rightarrow 0
$$

L. if $z \rightarrow 0$ along other directions, you see oscillation together with decay or blow up.

Thu (Casorati-Weierstross Tho).
If f is hol'c in a punctured disk
$D_{r}^{x}\left(z_{0}\right)=D_{r}\left(z_{0}\right)-\left\{z_{0}\right\}$, and has essential singularity at z_{0}, then. the image of $D_{r}^{x}\left(z_{0}\right)$ under f is dense in the complex plane \mathbb{C}.

i.e. dense means $\forall \omega \in \mathbb{C}, \forall \delta>0, \quad D_{\delta}(\omega) \cap f\left(D_{r}^{x}\left(z_{0}\right)\right) \neq \phi$.

Pf: We prove by contradiction. Suppose, $\exists w \in \mathbb{C}$, and $\delta>0$, sit. $\quad D_{\delta}(\omega) \cap f^{x}\left(D_{r}^{x}\left(z_{0}\right)\right)=\phi$. Then Consider

$$
\begin{aligned}
& \text { Consider } g(z)=\frac{1}{f(z)-w} \quad \text { for } z \in D_{r}^{x}\left(z_{0}\right) \\
& \because|f(z)-w| \geqslant \delta \quad \therefore|g(z)| \leqslant \frac{1}{\delta} \quad, \forall z \in D_{r}^{x}\left(z_{0}\right)
\end{aligned}
$$

by the "Riemann removable singularity the".
Hence $g(z)$ can be extend to $\operatorname{Dr}\left(z_{0}\right)$.

- If $g\left(z_{0}\right) \neq 0$, then $\frac{1}{g(z)}+w$ is an extension of f over z_{0}, i.e. z_{0} is a removable singularity.
- If $g\left(z_{0}\right)=0$, then $f(z)-w$ has a pole at z_{0}.

Either way, it contradicts with " f has an essential singulainty at z_{0} ".
E_{x} (cont.) $\quad z=r \cdot e^{i \theta} \quad, r \rightarrow 0$
then

$$
\begin{aligned}
e^{\frac{1}{z}} & =e^{\frac{1}{r \cdot e^{i \theta}}}=e^{\frac{1}{r} \cdot e^{-i \theta}} \\
& =e^{\frac{1}{r}(\cos \theta-i \sin \theta)} \\
& =e^{\frac{1}{r} \cos \theta} \cdot e^{-i \frac{1}{r} \cdot \sin \theta}
\end{aligned}
$$

For $\theta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$:

$$
\text { as } \gamma \rightarrow 0 \text {. }
$$

- for different θ, the spiralling rate is different.

For $\quad \theta \in\left(\frac{\pi}{2}, \frac{3 \pi}{2}\right)$,

spiralling inward.
Fro $\theta=\frac{\pi}{2}, \frac{3 \pi}{2}, \quad \sin \theta=+1$ or -1 , so. one gats

- Meromophic Function, Riemann sphere" a.k.a. extended complex place rational function.

$$
\widehat{\mathbb{C}}=\mathbb{C} \cup\{\cos \}^{\prime \prime} .
$$

Def: A function f on an open set Ω is meromorphic,
if there exists a sequame of points $\left\{z_{0}, z_{1}, z_{2}, \cdots\right\}$ in Ω, such that it has no limit point in Ω.
(ie. $\forall \omega \in \Omega, \exists \delta \geqslant \ldots . D_{\delta}(\omega)$, sit. $D_{\delta}(\omega)$ only contains 1 or 0 pt from the sequence.). and.

- f is hol'c in $\Omega-\left\{z_{0}, z_{1}, \ldots\right\}$
- f has poles at $\left\{z_{0}, \cdots, z_{k}, \cdots\right\}$.

$$
\text { (} \left.E_{x}: \quad \Omega=\mathbb{D}, \quad f(z)=1 / \sin \left(\frac{1}{z-1}\right) \text { pole at } \frac{1}{z-1}=n \pi \text {. i.e. } z=1+\frac{1}{n \pi} . \forall n \in z .\right)
$$

$$
\Omega=\epsilon_{1} \quad f(t)=\frac{y}{2} / \sin z .
$$

- Extend complex plane: $\widehat{\mathbb{C}}=\mathbb{C} \cup\{0\}$.
- consider nhl around $z=\infty$, by introducing new complex cord $\omega=1 / z$, then $z \rightarrow \infty$ corresponds to $\omega \rightarrow 0$.

$$
z \in \mathbb{C} .
$$

z is a good conslinate.

- The: If f is a meromorphic function on the extended complex plane $\hat{\mathbb{C}}$, then f is a rational function, i..c $f(z)=\frac{p(z)}{Q(z)}$.,

Q: what would go wrong, if the poles accumulate to a point $z_{0} \in \Omega$.

$$
\int \frac{1}{\sin (1 / z)} d z
$$

- check : integral is well defined, $\frac{1}{\sin (1 / z)}$ is finite on
- However, one cannot apply Cauby $\{|z|=1\}$. integral formula.

HoW:
\#7: let $z=e^{i \theta}$, and integrate along $|z|=1$.

$$
\text { on }|z|=1, \quad z \cdot \bar{z}=1
$$

$$
\begin{aligned}
d \theta & =\underbrace{\cos \theta}=\operatorname{Re}(z)=\frac{z+\bar{z}}{2}=\frac{z+1 / z}{2},
\end{aligned} \quad \bar{z}=1 / z
$$

\#3: $\quad \int_{-\infty}^{+\infty} \frac{e^{i x}}{x^{2}+a^{2}} d x=v \quad$ trick: $\cos z=\frac{e^{i z}+e^{-i z}}{2}$

- as $|z| \rightarrow \infty$ in the

$$
\int_{-\infty}^{+\infty} \frac{e^{-i x}}{x^{2}+a^{2}} d x
$$

upper half plane,

$$
\left|e^{i z}\right| \rightarrow 0,\left|e^{-i z}\right| \rightarrow \infty
$$

$\cos x=\operatorname{Re}\left(e^{i x}\right)$.

$$
\int_{-\infty}^{+\infty} \frac{\cos x}{x^{2}+a^{2}} d x=\int_{-\infty}^{+\infty} \operatorname{Re}\left(\frac{e^{i x}}{x^{2}+a^{2}} d x\right)
$$

$$
=\operatorname{Re} \int_{-\infty}^{\int_{-\infty}^{+\infty}} \frac{e^{i x}}{x^{2}+a^{2}} d x
$$

$$
\oint \frac{1}{(z-a)(z-b)(z-c)} d z \stackrel{?}{=} 0
$$

$$
\begin{aligned}
& \frac{1}{(a-b)(a-c)} \\
& +\frac{1}{(b-a)(b-c)} \\
& +\frac{1}{(c-a)(c-b)} \\
& \left.=\frac{(b-c)-(a-c)+(a-b)}{(a-b)(a-c)(b-c)}=\frac{0}{a \times b \times x^{5}}\right) \quad b:|z|<1 \\
& =0 .
\end{aligned}
$$

$$
\underbrace{\substack{x}}_{\substack{x \\ \cdots=\infty}}{ }^{w=0}
$$

