1. Open sets and Closed sets:

- $x=\mathbb{C}$
- basic open set: $D_{\varepsilon}(x)=\{y \in \mathbb{C}|\quad| y-x \mid<\varepsilon\}$.
- $\Omega \subset \mathbb{C}: \Omega$ is open, if $\forall x \in \Omega, \exists D_{\varepsilon}(x)$, such $x \in D_{\varepsilon}(x)<\Omega$
$A \subset \mathbb{C} ; \quad A$ is closed if $A^{c}=\mathbb{C} \backslash A$ is open.

basic properties: $\quad \bigcup_{\alpha} U_{\alpha}$ is open if each U_{α} is open.
$\left\{|y-x|<\frac{1}{n}\right\}$. $\bigcap_{\alpha} A_{\alpha}$ is closed. if A_{α} is closed.
$E_{x}: \bigcap^{\infty}$

$$
\bigcap_{n=1}^{\infty} \overline{\bar{D}_{\frac{1}{n}}(x)}=\{x\}
$$

open: $\bigcup_{n=1}^{\infty}(n-1, n+1) \times\left(-\frac{1}{n}, \frac{1}{n}\right)$
Let $Z \subset \mathbb{C}$
a interior point: $Z \in Z$ is an interior point, if $\exists U$ open noted of z.
s.t. $U \subset Z$.

$$
\text { Tor. } \left.\exists D_{\varepsilon}(z) \subset Z\right]
$$

- $\operatorname{int}(Z)$. set of all interior point.
- limit point : $z_{0} \in \mathbb{C}$ is a limit point of Z_{1} if there exist a seq of points in $Z . \quad Z_{1}, Z_{2}, Z_{3}, \cdots$, such that.

$$
\lim _{i \rightarrow \infty} z_{i}=z \quad\binom{\text { i.e. } \forall \varepsilon>0, \quad \exists N \text { big enough, such. } \forall n>N .}{\left|z_{n}-z\right|<\varepsilon .}
$$

$\bar{Z}=$ the set of limit points of. Z.
" smallest closed set containing Z.
$\left(\begin{array}{c}\text { called } \\ \text { the closure of } \\ z\end{array}\right)$

$$
=\bigcap A
$$

A closed
$A \supset Z$

$$
\text { - } \quad \partial Z=\bar{Z} \backslash \operatorname{int}(Z) \text {. }
$$

$$
\partial Z=\square \quad \text { (all } 4 \text { edges). }
$$

compact set

- bounded set: it can be covered by $D_{R}(0)$ for R large enough.
$\binom{$ less }{ governed $)} K \subset \mathbb{C}$ is a compact subset, if it is
closed and bounded.
unit closed disk.
Ex:

Equivalently:

$$
=\overline{D_{M}}
$$

(1). sequential compactness: K is seq, compact, if for any sequence in $K, \quad Z_{1}, z_{2}, \cdots$, there is a subsequence. $Z_{i_{1}}, Z_{i_{2}}, Z_{i_{3}}, \ldots$ such that $\lim _{k \rightarrow \infty} Z_{i_{k}}$ exists and is in K.
$i_{1}<i_{2<} i_{3} \cdots$
(2). (finite open cover.) : K is compact, if for any open covering of K, ie $\left\{U_{\alpha}\right.$ open. $\left.\alpha \in I \quad\right\}, \quad K \subset \bigcup_{\alpha \in I} U_{\alpha}$ then, there exists a finite subset Io CI., such that.

$$
K \subset \bigcup_{\alpha \in I_{0}} U_{\alpha}
$$

can be generalizal

- Continuous Function:

Def: $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function, it is continuous if $\forall x \in \mathbb{R} . \quad \forall \varepsilon>0 . \exists \delta>0$.
to

$$
\begin{aligned}
& \mathbb{R}^{n} \rightarrow \mathbb{R}^{m} \\
& \mathbb{Q} \rightarrow \mathbb{C} \\
& \Omega \rightarrow \mathbb{R} \\
& \Omega \rightarrow \mathbb{C}
\end{aligned}
$$

$$
\text { s.t. } \forall x^{\prime} \in \mathbb{R} \quad\left|x^{\prime}-x\right|<\delta
$$

$$
\Rightarrow\left|f\left(x^{\prime}\right)-f(x)\right|<\varepsilon
$$

(Equivalent): (ψ) for all open set $V \subset \mathbb{R}^{<\text {target }}$, $f^{-1}(V)$ is open.
"preimage of open is open"
(2) "f preserves limit".
say $z_{1}, \cdots, z_{m}, \cdots, \in \mathbb{R}^{\text {source }}$, s.t. $\lim _{i \rightarrow 0} z_{i}=z_{0}$.
then.

Property: - If f is a continuous function, K is compact $\left(\begin{array}{l}\text { in } \\ \text { the } \\ \text { source }\end{array}\right)$ then $f(k)$ is compact.
continuous.

$$
\cdot C^{0}, C^{1}, C^{2}, \cdots, C^{k}, \cdots
$$

C^{∞} (smooth function)
C^{ω} : real analytic.

- Holomorphic Function:
- Let $f: \Omega \rightarrow \mathbb{C} \quad,(\Omega \subset \mathbb{C}$ open). we say f is hol'c at $z_{0} \in \Omega$, if the following limit exist.

$$
\frac{f\left(z_{0}+h\right)-f\left(z_{0}\right)}{h} k \quad \text { as } h \rightarrow 0, h \in \mathbb{C} \text {. }
$$

\{ if it exist, call it $f^{\prime}\left(Z_{0}\right)$).

* f is hol'c in Ω if f is hol'c at every point in Ω.

Ex: (1) $\quad f: \mathbb{C} \rightarrow \mathbb{C} . \quad f(z)=z^{n}$. (n integer. >0).

$$
\begin{gathered}
f(z+h)-f(z)=(z+h)^{n}-z^{n}=z^{n}+n \cdot h \cdot z^{n-1}+O\left(h^{2}\right) \\
-z^{n} .
\end{gathered}
$$

$$
\begin{aligned}
& =n \cdot h \cdot z^{n-1}+o\left(h^{2}\right) \\
& \lim _{h \rightarrow 0} \frac{n h \cdot z^{n-1}+o\left(h^{2}\right)}{h}=\lim _{h \rightarrow 0} n \cdot z^{n-1}+O(h)=n \cdot z^{n-1} \\
& \text { (2). } f: \mathbb{C} \rightarrow \mathbb{C} \quad\left(\begin{array}{l}
z=x+i y \\
\bar{z}=x-i y \\
\frac{f(z+h)-f(z)}{h}
\end{array}=\frac{\overline{z+h}-\bar{z}}{h}=\frac{\bar{z}+\bar{h}-\bar{z}}{h}\right. \\
& =\frac{\bar{h}}{h} \quad
\end{aligned}
$$

write $h=\varepsilon \cdot e^{i \theta}$, then $\bar{h}=\varepsilon \cdot e^{-i \theta}$

$$
\frac{\bar{h}}{h}=\frac{\varepsilon \cdot e^{-i \theta}}{\varepsilon \cdot e^{i \theta}}=e^{-z i \theta}
$$

$\Rightarrow \lim (\cdots)$ of $h \rightarrow 0$ does not exist.
(3). $\frac{1}{z}$ is hold on $\mathbb{E} \backslash\{0\}$.
\bar{z}^{n} is not hol'c.
$z \cdot \bar{Z}$ is not hole' c.

- View $f: \mathbb{C} \rightarrow \mathbb{C}$ as $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} . \quad(x, y) \mapsto(u, v)$

$$
\mathbb{C} \simeq \mathbb{R}^{2} \quad z=x+i y . \quad z \leftrightarrow(x, y)
$$

- suppose F is C^{\prime}, differentiable. i.e.
$\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial v}{\partial x}, \frac{\partial v}{\partial y}$ exists and contimons.
Tex:: $f=\bar{z}, \quad(x, y) \mapsto(x,-y)$

$$
P \in \mathbb{R}^{2}, \quad H \in \mathbb{R}^{2} \text {. }
$$

$\frac{F(P+H)-F(P)}{H} \times \quad$ cannot (in general), divide a vector by a vector.
F is real differentiable

- Now, let's use the fact f is hol'c. $\quad P=(x, y)$
let $h=h_{1}+i h_{2}$.

$$
z=x+i y .
$$

- h is real: $h=h_{1}$

$$
f(z)=u+i v .
$$

$$
\frac{f(z+h)-f(z)}{h}=\frac{u\left(x+h_{1}, y\right)+i v\left(x+h_{1}, y\right)-(u(x, y)+i v(x, y))}{h_{1}}
$$

$$
=\frac{u\left(x+h_{1}, y\right)-u(x, y)}{h_{1}}+i \frac{v\left(x+h_{1}, y\right)-v(x, y)}{h_{1}}
$$

$\xrightarrow{h_{1} \rightarrow 0 .} \frac{\partial U}{\partial x}+i \frac{\partial V}{\partial x}=f^{\prime}(z)$.

- h is purely imaginary, $\quad h=i \cdot h_{2}$.

$$
\begin{aligned}
& \frac{u\left(x, y+h_{2}\right)-u(x, y)}{i h_{2}}+i \frac{v\left(x, y+h_{2}\right)-v(x, y)}{i h_{2}} \\
& \substack{\left.h_{2} \rightarrow 0 . \\
i \\
\frac{\partial u}{\partial y}\right)+\frac{\partial V}{\partial y}=f^{\prime}(z)}
\end{aligned}
$$

$\Rightarrow\left\{\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}<f\right.$ being hol'c
Riemann $\frac{\partial U}{\partial x}=-\frac{\partial u}{\partial y}$ at point Z. evaluated at point Z.
(u, v being differentiable.

$$
\text { ex: } f(x, y)=\sqrt{|x| \cdot|y|}
$$

at pout 0 . $+u, v$ satisfies $\Longrightarrow f$ is hol'c. $C R$.

$$
\begin{aligned}
& \text { - } F(P+H)=F(P)+I_{\tau_{2 \times 2 \text { matrix }} H^{\left(l^{(0}\right)}+H \cdot \underbrace{\Psi(H)}_{\rightarrow 0} \text { as }|H| \rightarrow 0 .} \\
& T=\left(\begin{array}{ll}
\frac{\partial u^{\prime}}{\partial x} & \frac{\partial u^{\prime}}{\partial y} \\
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y}
\end{array}\right)=2 \times 2 \text { matrix }
\end{aligned}
$$

- real i-dim. $\quad f: \mathbb{R} \rightarrow \mathbb{R}$

$$
f(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\underbrace{0\left(\left|x-x_{0}\right|\right.})
$$

complex 1-dim: f is hok at $z_{0} . \quad \frac{\text { a term }}{\left|x-x_{0}\right|} \rightarrow 0$

$$
f(z)=f\left(z_{0}\right)+f^{\prime}\left(z_{0}\right) \cdot\left(z-z_{0}\right)+o\left(\left|z-z_{0}\right|\right) .
$$

