Complex Analysis in one variable.

- complex analytic functions:
$f: \mathbb{C} \rightarrow \mathbb{C}$.
 $z=x+i y$. w/o "analytic", f can be viewed as $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$. being analytic means, we can take derivative of f in the complex sense:

$$
\frac{d f}{d z}\left(z_{0}\right):=\lim _{h \rightarrow 0} \frac{f\left(z_{0}+h\right)-f\left(z_{0}\right)}{h}, \quad h \text { can be complex. }
$$ analytic means $\frac{d f}{d z}$ exist for all $z_{\text {o }}$.

Consequeme of Analyticity: "unique extension property".
(1) "local determines global": if f and g are two analytic functions, and $f=g$ on a small open disk in \mathbb{C}

then $f=g$ everywhere.
[rot the case for real function (non-analytic function).

(2). Regularity: even though we only require the lat derivative to exist, it implies f is infinitely differentiable.
(i.e. a smooth function.)
(contour).
(3) Cauchy integral: given a curve $\gamma \subset \mathbb{C}$.

(satisfy certain mild property, e.g. γ encloses a region Ω and f is analytic on Ω). then $\int_{\gamma} f \cdot d z=0$

Particular objects to study: (nice analytic function).

- Riemann zeta function:

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}=\frac{1}{1^{s}}+\frac{1}{2^{s}}+\frac{1}{3^{s}}+\cdots
$$

- can $s=2 ? \zeta(2)=\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\cdots$ (converge $)$.
- converge for $S>1, \quad S \in \mathbb{R}$.
- converge for $s=x+i y, \quad x, y \in \mathbb{R}, \quad x>1$.

$$
2^{x+i y}=\left(e^{(\ln 2)}\right)_{x^{\operatorname{Im}}(x+i y)}=e^{\ln 2 \cdot x} \cdot e^{\ln 2 \cdot i y}
$$

- $\zeta(S)$ can be extended to be a analytic function everywhere on $\mathbb{C} \backslash\left\{\begin{array}{c}\text { some } \\ \text { points }\end{array}\right\}$

- very useful in number theory. Riemann Hypothesis says: $\zeta(s)$ has all its zeros on the line $\operatorname{Re}(s)=\frac{1}{2}$.
- Theta function:

$$
\Theta(\tau \mid z)=\sum_{n=-\infty}^{+\infty} e^{2 \pi i \cdot\left(\frac{1}{2} n^{2} \cdot \tau+n \cdot z\right) .} \frac{\text { say } \tau=i}{\text { dominate. }}, \begin{gathered}
i \cdot \tau=-1
\end{gathered}
$$

- the sum will converge for $\operatorname{Im}(\tau)>0$. (upper half plane). for arbitron z.

- analytic in τ and z.
- doubly periodic in Z. (lattice depends on τ).

- "modular" in τ.
- Other topics:
- Conformal Mapping:
conformal $=$ "keep the shape".

Amazing Result "Uniformazation Tho ".

unit disk.
any simply connected (exclude things like region on \mathbb{C}.
\mathbb{R}^{n} : exist notion of conformal transformation. but we don't that much flexibility to send any shape into one fixed shape.

Basic: - complex number.
$+\ldots, 1 ., 1 \cdot 1$, arg.
(think of making \mathbb{R}^{3} a number system ?)

- converge., limit., geometric pictures.

$$
\begin{array}{lcc}
\mathbb{C} \cong \mathbb{R}^{2} . \quad x=\operatorname{Re}(z), \quad y=\operatorname{Im}(z) . \\
z=x+i y . \quad x, y \in \mathbb{R} . & i^{2}=-1 . \\
x: \text { Real part }, \quad y: \operatorname{Imaginary} \text { part. } \\
\text { addition, subtraction: } & (x+i y)+(u+i v) \\
& & (x+u)+i(y+v) .
\end{array}
$$

notation.
x, y, u, v. real numbers. z, w complex numbers,
ts. real number.

$$
\text { - } \begin{aligned}
(x+i y)(u+i v) & =x u+i y \cdot u+x \cdot(i v)+(i y)(i v) \\
& =(x u-y v)+i(y u+x v) .
\end{aligned}
$$

division: assume $x+i y \neq 0$ (i.e. either $x \neq 0$ or $y \neq 0$).
then.

$$
\begin{aligned}
\frac{u+i v}{x+i y} & =(.)+i(.) ? \\
& =\frac{(u+i v)(x-i y)}{(x+i y)(x-i y)}=\frac{(u x+v y)+i(v x-u y)}{x^{2}+y^{2}} \\
& =\frac{u x+v y}{x^{2}+y^{2}}+i \frac{v x-u y}{x^{2}+y^{2}}
\end{aligned}
$$

- This makes \mathbb{C} a division ring. 0,1 " ($1 / 1)$, commutativity.
- other examples of division ring. is

$$
\begin{aligned}
& z \cdot w=w \cdot z . \\
& j \cdot u+k \cdot v . \\
& x \cdot y \cdot u \cdot v \in \mathbb{R} .
\end{aligned}
$$

quaternion: $\quad H \simeq \mathbb{R}^{4} . \quad q=x+i y+j \cdot u+k \cdot v$.

$$
\begin{array}{rlrl}
i^{2}=j^{2}=k^{2} & =-1 & & x \cdot y \cdot u \cdot v \in \mathbb{R} . \\
i j & =-j i . & i \cdot j=k . & \\
& i k & =-k i & j k=i \\
& \cdots & k \cdot i=j & -j
\end{array}
$$

$$
(1+2 i)+(3)=
$$

multiplication \rightarrow rotation + scaling polar expression: $\quad z=r e^{i \theta}$

$$
r \geqslant 0
$$

$$
\begin{aligned}
& z^{\prime}=r^{\prime} \cdot e^{i \theta^{\prime}} \\
& z \cdot z^{\prime}=\left(r \cdot r^{\prime}\right) \cdot e^{i\left(\theta+\theta^{\prime}\right)}
\end{aligned}
$$

$\theta \in \mathbb{R} \bmod 2 \pi \mathbb{Z}$. $\theta \sim \theta+2 \pi \cdot n$.
r : pboslute value (or. "modulus") of z
θ : argument (or, "phase") of z.
(2) Stereographic Projection:
(see Ahlfors. \$1.2).

$$
x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1 .
$$

$$
\mathbb{R}^{3}
$$

$$
N^{(\infty)}, \varphi(z)
$$

Benefit for this presentation:

- to include ∞ in the picture.
- to not discriminate ∞

Read: Stein: $1.1 .+(1.2$ convergence.)
Ahlfors: (c hl)

- $f(z)=\frac{z+3}{z-1} \rightarrow$ wounds to live on $S^{2} \because f(\infty)=1$.

$$
\dot{L} e^{z^{2}} \cdot \cdots
$$

$$
\underset{-\cdots}{\infty}=\epsilon^{2} / z^{2}
$$

