Name:

\qquad

- You have 80 minutes to complete the exam, 9:40-11:00am.
- Please write your name and page number on every page that you submit. The submission deadline is at 11:10am.
- This is a open-book exam, you can use your textbook and notes. You cannot use internet or calculator.
- You may only use the results covered in class so far, including results in the lecture note and results in Stein up to Chapter 2.
- If you have question during the exam, you may contact me in zoom,
- Please write neatly. Answers which are illegible for the reader cannot be given credit.

Good Luck!

Question	Points	Score
1	20	
2	40	
3	20	
4	20	
Total	100	

1. (20 points, 4 points each)
(1) What is the definition of a residue?
(2) What is the argument principle? What is winding number?
(3) If f is a rational function on $\widehat{\mathbb{C}}$, is it always true that the total number of zero equals the total number of poles (considering multiplicity)?
(4) What is open mapping theorem?
(5) What is the definition of a simply connected domain? Is the following open set simply connected?

$$
\Omega=\mathbb{D} \backslash\{x+i y \mid y=0, x \in(-1,-0.5] \cup[0.5,1)\}
$$

2. (40 points, 10 points each) Show your steps in these calculations, otherwise no credits will be given.
(1) Compute the residue of $f(z)=(z+1)^{2} /(z-1)^{3}$ at $z=1$. (Hint: change variable, and let $u=z-1$, compute the residue at $u=0$).
(2) Compute the number of zeros of $f(z)=z^{3}-4 z+1$ inside and outside the unit circle respectively.
(3) Compute the integral $\int_{|z|=2} \frac{1}{z^{5}-1} d z$. (Hint: you do not need to compute the residues at the 5 roots of unity)
(4) Let $f(z)=\frac{z^{2}(z+10)^{3}}{(z-10)^{4}}$, compute $\frac{1}{2 \pi i} \int_{|z|=1} \frac{f^{\prime}(z)}{f(z)} d z$.
3. (20 points) "Generalized residue theorem." If we compare the function with simple pole $\frac{1}{z-a}$ as the 'electric force' generated by a point charge at a, then the following is the analog of of charge distributed along a line segment $[a, b]$ with charge density $g(x)$ (assume to be smooth and bounded on the interval)

$$
f(z)=\int_{a}^{b} \frac{g(x)}{z-x} d x
$$

Let γ be a simple closed curve containing $[a, b]$ in the interior. If you like, you may choose $[a, b]=[-1 / 2,1 / 2]$ and γ to be the unit circle.
(1) (15 pts) prove that

$$
\frac{1}{2 \pi i} \int_{\gamma} f(z) d z=\int_{a}^{b} g(x) d x
$$

where the right hand side can be interpreted as the total charge inside γ.

The following part (2) and (3) might be a bit tricky, and one should consider them after finishing the rest of the exam.
(2) (3 pts) after the initial success, you decide to use a more powerful singularity than simple pole, and define the function

$$
F(z)=\int_{a}^{b} \frac{g(x)}{(z-x)^{2}} d x
$$

Compute the same integral $\frac{1}{2 \pi i} \int_{\gamma} F(z) d z$.
(3) (2 pts) If you only know $f(z)$, can you recover $g(x)$? If so, describe your method.
4. (20 points) If a is a complex number with $|a|<1$, then
(1) 5 pt. show that $f(z)=\log (1-a z)$ is a single valued holomorphic function for $z \in \mathbb{D}$, with $f(0)=0$.
(2) 15 pts. prove that

$$
\int_{0}^{2 \pi} \log \left|1-a e^{i \theta}\right| d \theta=0
$$

