Today: 1) Overview of Ch2 2) Goursats Theorem : JFZ f dZ = 0 ("entry point") 3) Cauchy Thm in a disk 1) Overview of Ch 2 (and veriew of Ch 1). So far, what do we know about hol's function? (1) definition : complex derivative f'(z) exist. (f'(z) continuous?) ② convergent power series ∑n=o an (R-Zo)" is hol'c. (do all holomorphic functions admit such expansion?) In Ch 2, we answer these questions in affirmative., and much more. and a powerful is using line integral. unit open disk. Main Results: $\oint_{\mathcal{F}} f(z) dz = 0$ if f(z) is hold in \tilde{D} , \bigcirc T is a closed curve in D. (Thursday) Cauchy integral formula. if f is hol's on \overline{D} , $C = \partial D$, then. $f(\underline{3}) | \underline{7}$ $f(z) = \frac{1}{2\pi i} \oint_{C} \frac{f(z)}{z-z} dz$ then, " knowledge of the function at the boundary determines its behavior in the interior." To begin, we start from a baby example of (1)., where I is a triangle., that is the Goursat thm.

Then (Gaurset): Let f be a holic function on a region S2,
and T be a (hollow) triangle in
$$\Omega$$
, whose interior is in $S2$, then
 $\int_T f(3) dz = 0$
Idea: subdivide the triangle into smaller and smaller ones
recursively, and prove by contradiction.
Pf: Let $T^{(0)} = T$ be the initial triangle.
 $d^{(0)} = dianter of $T^{(0)} = \max_{x,y\in T} |X-y|$
 $D^{(0)} = porimeter of $T^{(0)} + \max_{x,y\in T} |X-y|$
 $T^{(0)} = T^{(1)} + T^{(1)}_{x} + T^{(1)}_{x} + T^{(1)}_{x}$
 $T^{(0)} = T^{(1)} + T^{(1)}_{x} + T^{(1)}_{x} + T^{(1)}_{x}$
 $T^{(0)} = T^{(1)}_{x} + T^{(1)}_{x} + T^{(1)}_{x} + T^{(1)}_{x}$
 $T^{(0)} = T^{(1)}_{x} + T^{(1)}_{x} + T^{(1)}_{x} + T^{(1)}_{x}$
 $T^{(0)} = T^{(1)}_{x} + T^{(1)}_{x} + T^{(1)}_{x} + T^{(1)}_{x}$
 $T^{(2)} = T^{(1)}_{x} + T^{(2)}_{x} + T^{(2)}_{x} + T^{(2)}_{x}$
 $T^{(2)} = T^{(1)}_{x} + T^{(2)}_{x} + T^{(2)}_{x} + T^{(2)}_{x}$
 $T^{(2)} = T^{(1)}_{x} + T^{(2)}_{x} + T^{(2)}_{x} + T^{(2)}_{x}$
 $T^{(2)} = T^{(1)}_{x} + T^{(2)}_{x} + T^{(2)}_{x} + T^{(2)}_{x}$
 $T^{(2)} = T^{(2)}_{x} + T^{(2)}_{x} + T^{(2)}_{x} + T^{(2)}_{x}$
 $T^{(2)} = T^{(2)}_{x} + T^{(2)}_{x} + T^{(2)}_{x} + T^{(2)}_{x}$
 $T^{(2)} = T^{(2)}_{x} + T^{(2)}_{x} + T^{(2)}_{x} + T^{(2)}_{x} + T^{(2)}_{x}$
 $T^{(2)} = T^{(2)}_{x} + T^{(2)}_{x} +$$$

is the boundary. Then

$$T^{(0)} \supset T^{(1)} \supset T^{(2)} \supset \cdots$$
where diameter so.
is a nested sequence of compact set. Then there exists a unique
point Z_{0} , $\in T^{(0)}$ for all n .
(Pf : pick any $W_{R} \in T^{(0)}$. then UN^{3} is a Canchy sequence.
hence converges. By closedness of $T^{(0)}$, the limit point $W \in T^{(0)}$ by.
That's existence. Now suppose there are a limit pts, W, W' ,
thus diam ($T^{(0)}$) $\geqslant |W-W'|$ for all n . contradicts with diam so.)
($P(Z) = f(Z_{0}) + f'(Z_{0}) (Z-Z_{0}) + \psi(Z) (Z-Z_{0})$.
Where $|\psi(Z)| \rightarrow 0$ as $Z \rightarrow Z_{0}$.
In particular, $E_{n} := \frac{max}{Z \in T^{(0)}} |\psi(Z)| \rightarrow 0$ as $n \Rightarrow 0$
 $\int_{T^{(0)}} \int dZ = \int_{T^{(0)}} f(Z_{0}) + f'(Z_{0}) \cdot (Z-Z_{0}) + \psi(Z) (Z-Z_{0}) dZ$.
 $\int_{T^{(0)}} \frac{d}{dZ} \int f(Z_{0}) + f'(Z_{0}) + f'(Z_{0}) \cdot (Z-Z_{0}) + \psi(Z) (Z-Z_{0}) dZ$.
 $\int_{T^{(0)}} \frac{d}{dZ} \int f(Z_{0}) + f'(Z_{0}) + f'(Z_{0}) \cdot (Z-Z_{0}) + \psi(Z) (Z-Z_{0}) dZ$.
 $\int_{T^{(0)}} \frac{d}{dZ} \int f(Z_{0}) + f'(Z_{0}) + f'(Z_{0}) \cdot (Z-Z_{0}) + \psi(Z) (Z-Z_{0}) dZ$.
 $\int_{T^{(0)}} \frac{d}{dZ} \int f(Z_{0}) + f'(Z_{0}) + f'(Z_{0}) - \frac{(Z-Z_{0})^{2}}{Z} + \int_{T^{(0)}} \psi(Z) (Z-Z_{0}) dZ$.
 $\int_{T^{(0)}} \frac{d}{dZ} \int f(Z_{0}) + \frac{\pi ax}{Z \in T^{(0)}} \int \frac{1}{Z - Z_{0}} + \frac{1}{4\pi} \cdot E_{n}$.

(4) Put everything together.: $\left|\int_{T(0)} f(z) dz\right| \leq 4^n \cdot \left|\int_{T(0)} \cdot f(z) dz\right| \leq 4^n \cdot \varepsilon_n \cdot \frac{1}{4^n} \cdot p^{(0)} \cdot d^{(0)}$ $= \epsilon_n \cdot \rho^{(o)} \cdot d^{(o)}$ since this is true for any n, we may let $n \rightarrow \infty$, to get $\left|\int_{T^{(0)}} f^{(2)} dz\right| \leq 0, \quad \Rightarrow \quad \int_{T^{(0)}} f^{(2)} dz = 0.$ #.With Goursat thm in hand, we immediately get Corollary: let Σ be open, $f: \Sigma \rightarrow C$ hold. P be a polygon. (can be triangulated) whose interior is in Ω , then $\int p f(z) dz = 0$ Notation: if r is a closed curve, we sometimes write $\mathfrak{G}_{\mathcal{T}} f(\mathfrak{F}) d\mathfrak{F}$ for $\int_{\mathcal{T}} f(\mathfrak{F}) d\mathfrak{F}$, For simplicity and concreteness, Cat's consider hol's on D Thm: Let f be a hol'c function on D, then. there exists a primitive F for f. PF: We construct a function $F: D \rightarrow C$, then

we show that F is hold with F'=f.

For any ZE D, we define a curve Fz from O to Z as following (first move horizontally, then more vertically). And we define $F(z) = \int_{T_z} f(w) dw$ · To check F(Z) is hol'c., we consider the small variations F(Z+h) - F(Z). q Z+h 1 Zth $= \int_{\int_{a}^{z}} f(w) dw$ $\int \frac{f(\omega) d\omega}{\int t^{2+h}} + \int \frac{f(\omega) d\omega}{\int z^{2+h}} + \int \frac{z}{z^{2+h}} + \int \frac{z}{z^{2+$ - $O + \int_{z}^{z} f(w) dw$ Ξ t.; jis contain in D and f is hold in D : by Goursat thm. & cor. Vanishes, $f(z) + f'(z)(w - z) + \psi(w)(w - z) dw$. ~ little "o" notation. represent a term R 6h) such that $\frac{R(h)}{h} \rightarrow 0 \quad \text{as } h \rightarrow 0.$ $f(z) \cdot h + o(h)$ 5 -F(Z+h) - F(Z).

Thus, $f'(z) = \lim_{h \to 0} \frac{F(z+h) - F(z)}{h} = f(z)$. Thm: (Cauchy's thm for a disk): Let f be a hol's function in D T a (piecewise smooth) closed curve in D, then $\oint_{X} f(z) dz = 0$ Pf: :: f(z) has a primitive F. :. $\oint_{F} F'(z) dz = 0$.