Today:

1) Overview of Ch 2
2) Goursat Theorem: $\int$ 依 $f d z=0 \quad$ (entry point").
3) Cauchy Thm in a disk
4) Overview of Ch 2 (and review of $C_{h} 1$ ).

So far, what do we knows about hol'c function?
(1) definition: complex derivative $f^{\prime}(z)$ exist. $\left(f^{\prime}(z)\right.$ continuous? $)$
(2) convergent power series $\sum_{n=0}^{\infty} a_{n}\left(z-Z_{0}\right)^{n}$ is hol'c.
( do all holomorphic functions admit such expansion??)
In $\operatorname{ch} 2$, we answer these questions in affirmative., and much move. and a powerful is using line integral.


Main Results:
(1) $\oint_{\gamma} f(z) d z=0$ if $f(z)$ is hol'c in $\mathbb{\mathbb { D }}$,
$\gamma$ is a closed curve in $\mathbb{D}$.
(2) Cauchy integral formula.
if $f$ is hole on $\bar{D}, C=\partial \mathbb{D}$, then.
then, $\quad f(z)=\frac{1}{2 \pi i} \oint_{C} \frac{f(\xi)}{\xi-z} d \xi$.

" knowledge of the function at the boundary determines its behavior in the interior."

To begin, we start from a baby example of (1)., where $r$ is a triangle., that is the Goursat the.
(Jordan thm: simple closed curve on $\mathbb{R}^{2}$, cut the plane into 2 parts: interior. exterior).

Thm (Goursat) : Let $f$ be a hol'c function on a region $\Omega$, and $T$ be a (hollow) triangle in $\Omega$, whose interior is in $\Omega$, then

$$
\int_{T} f(z) d z=0
$$



Idea: subdivide the triangle into smaller and smaller ones recursively, and prove by contradiction.

Pf: Let $T^{(0)}=T$ be the initial triangle.

$$
d^{(0)}=\text { diaster of } T^{(0)}=\max _{x, y \in T^{(0)}}|x-y|
$$

$p^{(0)}=$ perimeter of $T^{(0)}=$ sum of the lengths of 3 sides.
Divide $T^{(0)}$ into 4 parts.

$$
T^{(0)}=T_{1}^{(1)}+T_{2}^{(1)}+T_{3}^{(1)}+T_{4}^{(1)}
$$


(if we write both sides as sums of oriented segments.) $T_{1}^{(1)}$

$$
\begin{aligned}
\therefore \mid \underbrace{\int_{T_{2}}}_{T^{(0)} f(z) d z} & =\left\lvert\, \frac{\sum_{i=1}^{4} \int_{T_{i}^{(1)}} f(z) d z\left|\leqslant \sum_{i=1}^{4}\right| \int_{T_{i}^{\prime \prime}} f(z) d z \mid .}{}\right.
\end{aligned}
$$

We let $I^{(1)}$ be $a$. $T_{i}^{(1)}$ that achieves the above maximum. Repeat the above process, one get a sequence of triangles $T^{(2)}, T^{(3)}, \cdots$. Then

$$
\begin{aligned}
d^{(n)} & =\text { diameter of } T^{(n)}=\frac{1}{2} \cdot d^{(n-1)} \\
& =\frac{1}{4} d^{(n-2)}=\frac{1}{2^{n}} d^{(0)} \\
P^{(n)} & =\text { perimeter of } T^{(n)}=\frac{1}{2^{n}} \cdot P^{(0) .}
\end{aligned}
$$

(2) Let $\mathbb{I}^{(n)}$ (bold face) be the closed triangle, such that $T^{(n)}$
is the boundary. Then

$$
\mathbb{I}^{(0)} \supset \mathbb{I}^{(1)} \supset \mathbb{I}^{(2)} \supset \cdots \text { whose }
$$

is a nested sequeme of compact set. Then there exists a unique point $z_{0}, \in \mathbb{I}^{(n)}$ for all $n$.
(Pf: pick any tow $\omega_{n} \in \mathbb{I}^{(n)}$. then $\left\{\omega_{n}\right\}$ is a Cauchy sequence. hence converges. By closedness of $\mathbb{I}^{(n)}$, the limit point. $w \in \mathbb{I}^{(n)} \forall n$. That's existence. Now suppose there ave 2 limit pts, $\omega, \omega^{\prime}$, then $\operatorname{diam}\left(\mathbb{1}^{(n)}\right) \geqslant\left|w-w^{\prime}\right|$ for all $n$. contradicts with $\operatorname{diam} \rightarrow 0$.)
(3) We use the holomorphicity of $f(z)$ at $z_{0}$, to write

$$
f(z)=f\left(z_{0}\right)+f^{\prime}\left(z_{0}\right)\left(z-z_{0}\right)+\underline{\psi(z)} \cdot\left(z-z_{0}\right) \Leftrightarrow \xrightarrow{z-z_{0}} \underset{f\left(z_{0}\right)}{ }
$$

where $|\psi(z)| \rightarrow 0$ as $z \rightarrow z_{0}$.
In particular, $\quad \varepsilon_{n}:=\max _{z \in T^{(n)} \mid}^{|\psi(z)|} \rightarrow 0$ as $n \rightarrow \infty$
they have primitives.

$$
\int_{-T^{(n)}} f d z=\int_{T^{(n)}}\left(f\left(z_{0}\right)+f^{\prime}\left(z_{0}\right) \cdot\left(z-z_{0}\right)+\psi(z)\left(z-z_{0}\right) d z .\right.
$$

$$
\begin{aligned}
& \begin{array}{c}
=\int_{T^{(n)}} \frac{d}{d z}\left\{f\left(z_{0}\right) \cdot\left(z-z_{0}\right)+f^{\prime}\left(z_{0}\right) \cdot \frac{\left(z-z_{0}\right)^{2}}{2}\right\} \cdot d z+\int_{T^{(n)}} \psi(z)\left(z \cdot z_{0}\right) d z \\
0 \cdot \because \oint F^{\prime}(z) d z=0 .
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \int_{T^{(n)}} \psi(z) \cdot\left(z-z_{0}\right) \cdot d z \mid \leqslant \int_{T^{(n)}} \cdot{ }^{|\psi(z)|} \cdot \underbrace{\left|z-z_{0}\right|}_{d s} \cdot \underbrace{}_{{ }^{\mid}|d z|} \\
& \leqslant \max _{z \in T^{(n)}}|\psi(z)| \cdot \max _{z \in T^{(n)}}\left|z-z_{0}\right| \cdot \int T^{(n)} \cdot|d z| \\
& \lesssim \quad \varepsilon_{n} \cdot \underline{d^{(n)}} \cdot \underline{p}^{(n)}=\frac{1}{4^{n}} \cdot \underline{\varepsilon_{n}} \cdot d^{(0)} \cdot p^{(0)}
\end{aligned}
$$

(4) Put everything together.:

$$
\begin{aligned}
& \left|\int_{T^{(0)}} f(z) d z\right| \leqslant 4^{n} \cdot\left|\int_{T^{(n)}} \cdot f(z) d z\right| \leqslant 4^{n} \cdot \varepsilon_{n} \cdot \frac{1}{4^{n}} \cdot p^{(0)} \cdot d^{(0)} \\
& \\
& =\varepsilon_{n} \cdot p^{(0)} \cdot d^{(0)} .
\end{aligned}
$$

since this is true for any $n$, we may let $n \rightarrow \infty$, to get

$$
\left|\int_{T^{(0)}} f(z) d z\right| \leqslant 0 . \Rightarrow \int_{T^{(0)}} f(z) \cdot d z=0 .
$$

With Goursat the in hand, we immediately get
Corollary: Let $\Omega$ be open, $f: \Omega \rightarrow \mathbb{C}$ holic. $P$ be a polygon. (can be triangulated) whose interior is in $\Omega$, then $\int_{p} f(z) d z=0$

Notation: if $\gamma$ is a closed curve, we sometimes write $\oint_{r} f(z) d z$ for $\int_{\gamma} f(z) d z$,

For simplicity and concreteness, Get's consider hol'c on $\mathbb{D} \begin{gathered}\mathbb{D}^{2}=u+i v \\ s(u+i v)(d x+i d g)\end{gathered}$
Thm: Let $f$ be a hol'c function on $\mathbb{D}$, then there exists a primitive $F$ for $f$.

we show that $F$ is hol'c with $F^{\prime}=f$.

For any $z \in \mathbb{D}$, we define a curve $\gamma_{z}$ from 0 to $z$ as following (first move horizontally, then move vertically). And we define


$$
F(z):=\int_{\gamma_{z}} f(\omega) d \omega
$$



- To check $F(z)$ is hol'c., we consider the small variations.

$$
\begin{aligned}
& F(z+h)-F(z) . \\
= & \int_{j_{j} q^{z} z+h} f(w) d w
\end{aligned}
$$


$=\int_{\omega_{2} z^{z+h}} f(\omega) d \omega+\int_{a^{z} \cdot z+h} f(\omega) d \omega$
 in $D$ and $f$ is colic in $\mathbb{D}$ $\therefore$ by Goursat the. a cor.

$$
\begin{aligned}
\int_{z^{\prime} / w^{x}} f(z) \cdot d w & =f(z) \cdot \int_{z}^{1} \frac{1}{z}+h \\
& =f(z) \cdot(z+h-z)
\end{aligned}
$$

$$
=f(z) \cdot h
$$

represent a term $R(h)$ such that

$$
\begin{aligned}
& =(f(z) \cdot h)+o(h) \quad \frac{R(h)}{h} \rightarrow 0 \text { as } h \rightarrow 0 . \\
& =F(z+h)-F(z) .
\end{aligned}
$$

Thus, $\quad F^{\prime}(z)=\lim _{h \rightarrow 0} \frac{F(z+h)-F(z)}{h}=f(z)$.

The: (Cauchy's the for a disk):
Let $f$ be a hol'c function in $\mathbb{D}$.
$\gamma$ a (piecenise smooth) closed curve in $\mathbb{D}$, then

$$
\Rightarrow \oint_{\gamma} f(z) d z=0
$$

Pf: $\because f(z)$ has a primitive F. ie., $F^{\prime}=f$

$$
\begin{array}{rlr}
\therefore \quad & \oint_{\gamma} F^{\prime}(z) d z & =0 . \\
& F^{\prime}(r(b))-F(\gamma(a)) \quad & r:[a, b] \rightarrow \mathbb{D} . \\
& & \\
& & (a)=\gamma(b) .
\end{array}
$$

Rok: Converse Thm: if $f$ is continuous in $\mathbb{D}$. if $\forall \gamma$ closed curve. in $\mathbb{D}, \quad \int_{\gamma} f d z=0$ then $f$ is hol'c.

$$
A=\left\{\frac{1}{2}<|z|<2\right\}
$$

$$
A=(x) \quad f: A \rightarrow \mathbb{C} \quad f(t)=\frac{1}{z}
$$

$$
\oint_{|z|=1} f(z) \cdot d z=2 \pi i=\oint \frac{1}{z} d z
$$

Ex:

$$
\oint_{|z|=1}(\underbrace{\frac{1}{z-\frac{1}{2}}+\frac{1}{z-\frac{1}{3}}+\frac{1}{z-\frac{i}{2}}}_{f(z) .}) \cdot d z
$$


change variable,

$$
w=\frac{1}{z}
$$

so $z=\infty \Leftrightarrow \omega=0$.

$$
\begin{gathered}
d\left(\frac{1}{w}\right)=\frac{-1}{w^{2}} \cdot d w \\
f\left(\frac{1}{w}\right)\left(\frac{-1}{w^{2}}\right)=g(w) .
\end{gathered}
$$

$$
\begin{aligned}
& =\oint_{\underline{-}}\left(\frac{1}{\omega}\right) d \frac{1}{\omega} \\
& =\oint_{|\omega|=1} \underline{g}(\omega) d \omega
\end{aligned}
$$

$g(\omega)$ is a folic function $=0$ on $\{|\omega| \leq 1\}$

$$
z^{\alpha} \cdot(z-1)^{\beta}, \quad \alpha, \beta \in \mathbb{\mathbb { C }}
$$

\#18:

$R=1$.

Q: given $\left(z_{0}\right)<R$.

- can one find $\left\{c_{n}\right\rangle^{r}$ st. $f(z) \equiv \sum_{n} c_{n} \cdot\left(z-z_{0}\right)^{n}$.

$$
" f^{(n)}\left(z_{0}\right) \frac{1}{n!} \quad \text { for } \quad\left|z-z_{0}\right|<r \text { ? }
$$

(1) $C_{n}=$ ? (ans: it will be an infinitesum.)
(2) it converges, at least, for $\left|z-z_{0}\right|<r$
requives one to bound $\left|C_{n}\right|$

\#25
(a)

(b)
( 80
(c) hint: $\quad \frac{1}{(z-a)(z-b)}=\frac{?}{z-a}+\frac{?}{z-b}$

