Today: 1) Overview of Ch2 2) Goursat Theorem : JFZ f dZ = 0 ("entry point") 3) Cauchy Thm in a disk 1) Overview of Ch 2 (and veriew of Ch 1). So far, what do we know about hol's function? (1) definition : complex derivative f'(z) exist. (f'(z) continuous?) ② convergent power series ∑n=o an (R-Zo)" is hol'c. (do all holomorphic functions admit such expansion?) In Ch 2, we answer these questions in affirmative., and much more. and a powerful is using line integral. unit open disk. Main Results: $\oint_{\mathcal{F}} f(z) dz = 0$ if f(z) is hold in \mathbb{D} , \bigcirc T is a closed curve in D. (Thursday) Cauchy integral formula. if f is hol' on \overline{D} , $C = \partial D$, then. then, $f(\overline{z}) = \frac{1}{2\pi i} \oint \frac{f(\overline{z})}{\overline{z} - \overline{z}} d\overline{z}$. " knowledge of the function at the boundary determines its behavior in the interior." To begin, we start from a baby example of (1)., where N is a triangle., that is the Goursat thm. (Jordan Hnn: simple closed curve on R², but the plane into 2 parts; interior. exterior)

Thm (Gourset): Let f be a hol's function on a region
$$\Omega$$
,
and T be a (hollow) triangle in Ω , whose interior is in Ω , then
 $\int_{T} f(z) dz = 0$
 $I_{T} = f(z) dz = 0$
 I_{T}

is the boundary. Then

$$T^{(0)} \supset T^{(1)} \supset T^{(2)} \supset \cdots$$
where diameter are.
is a nested sequence of compact set. Then there exists a unique
point χ_{0} , $\in T^{(n)}$ for all n .
(If: pick any $W_{R} \in T^{(n)}$, then $\{W_{R}\}$ is a Cauchy sequence.
house converges. By closednors of $T^{(n)}$, the limit point: $w \in T^{(n)}$ H.
That's entrieve. Now suppose there are 2 limit pts, w, w' ,
then diam $(T^{(n)}) \not\equiv |w-w'|$ for all n . contradicts with diam or.)
(B) We use the holomorphicity of $f(x)$ at χ_{0} , to write
 $f(z) = f(z_{0}) + f'(z_{0}) (z \cdot z_{0}) + \psi(z) (z \cdot z_{0})$.
 $f(z) = f(z_{0}) + f'(z_{0}) (z \cdot z_{0}) + \psi(z) (z \cdot z_{0})$.
 $f(z) = f(z_{0}) + f'(z_{0}) (z \cdot z_{0}) + \psi(z) (z \cdot z_{0})$.
 $f(z) = f(z_{0}) + f'(z_{0}) (z \cdot z_{0}) + \psi(z) (z \cdot z_{0})$.
 $f(z) = f(z_{0}) + f'(z_{0}) (z \cdot z_{0}) + \psi(z) (z \cdot z_{0})$.
 $f(z) = f(z_{0}) + f'(z_{0}) (z \cdot z_{0}) + \psi(z) (z \cdot z_{0}) dz$.
 $f(z) + f'(z_{0}) \cdot (z - z_{0}) + \psi(z) (z \cdot z_{0}) dz$.
 $f(z) + f'(z_{0}) \cdot (z - z_{0}) + \psi(z) (z \cdot z_{0}) dz$.
 $f(z) + f'(z_{0}) \cdot (z - z_{0}) + \psi(z) (z \cdot z_{0}) dz$.
 $f(z) + f'(z_{0}) \cdot (z - z_{0}) + \psi(z) (z \cdot z_{0}) dz$.
 $f(z) + f'(z_{0}) \cdot (z - z_{0}) + \psi(z) (z - z_{0}) dz$.
 $f(z) + f'(z) + f'(z_{0}) \cdot (z - z_{0}) + \psi(z) (z - z_{0}) dz$.
 $f(z) + f'(z) + f'(z_{0}) \cdot (z - z_{0}) + \psi(z) (z - z_{0}) dz$.
 $f(z) + f'(z) + f'(z_{0}) \cdot (z - z_{0}) + \psi(z) (z - z_{0}) dz$.
 $f(z) + f'(z) + f'(z_{0}) \cdot (z - z_{0}) + f'(z_{0}) + (z - z_{0}) + (dz)$.
 $f(z) + f'(z) +$

(4) Put everything together.: $\left|\int_{T(0)} f(z) dz\right| \leq 4^n \cdot \left|\int_{T(0)} \cdot f(z) dz\right| \leq 4^n \cdot \varepsilon_n \cdot \frac{1}{4^n} \cdot p^{(0)} \cdot d^{(0)}$ = $\varepsilon_n \cdot \rho^{(o)} \cdot d^{(o)}$. since this is true for any n, we may let $n \rightarrow \infty$, to get $\left|\int_{T^{(0)}} f^{(2)} d^2\right| \leq 0, \quad \Rightarrow \quad \int_{T^{(0)}} f^{(2)} d^2 = 0.$ # With Goursat thm in hand, we immediately get Corollary: let Ω be open, $f: \Omega \rightarrow C$ hold. = P be a polygon. (can be triangulated) whose interior is in Ω , then $\int_{P} f(z) dz = 0$ Notation: if r is a closed curve, we sometimes write $\mathfrak{G}_{\mathcal{T}} f(\mathfrak{F}) d\mathfrak{F}$ for $\int_{\mathcal{T}} f(\mathfrak{F}) d\mathfrak{F}$, uni-opon disk. For simplicity and concreteness, lat's consider hol's on D f=u+iv s (u+iv) cax+1ds) Thm: Let f be a hol'c function on D, then. there exists a primitive F for f. Prq are C' pdx+qdy and S_ pdx+qdy PF: We construct a function $F: D \rightarrow C$, then

we show that F is hold with F'=f.

For any ZED, we define a curve by from O to Z as following (first move horizontally, then more vertically). And we define · To check F(Z) is hol'c., we consider the small variations F(Z+h) - F(Z). g 2+h (2+h) $= \int_{\int_{a}^{z}} f(w) dw$ f(w) dw $f(\omega) d\omega +$ -2+h 12fdz/ + Jz fw dw. s maxiff . [length of Ξ t.; is contain in D and f is hold in D $\int f(z)$. dw i by Goursat thm. & cor. Vanishes, $f'(z) \cdot \frac{h^2}{2} = \frac{z}{w}$ with f(z), dw = f(z). Idw -محمي ۲+۲ = f(z) · (z+h-z) $(f(z)) + (f'(z)(w-z) + \psi(w)(w-z)) dw$. little "o" notation. = f(z).h. represent a term RGh) such that $f(z) \cdot h +$ $\frac{R(h)}{h} \rightarrow 0 \quad \text{as } h \rightarrow 0.$ (och) F(Z+6) - F(Z). 2

Thus,
$$F'(z) = \lim_{h \to 0} \frac{F(z+h) - F(z)}{h} = f(z)$$
.
Thus, $F'(z) = \lim_{h \to 0} \frac{F(z+h) - F(z)}{h} = f(z)$.
Thus, $F'(z) = \int_{h \to 0} \frac{F(z+h) - F(z)}{h} = f(z)$.
Thus, $F'(z) = \int_{h \to 0} \frac{F(z+h) - F(z)}{h} = \int_{h \to 0} \frac{F(z+h) - F(z+h)}{h} = \int_{$

change variable, $w = \frac{1}{2}$ - 121-1 So Z=10 (⇒) W=0. $d(\omega) = \frac{-1}{\omega^2} d\omega$ Ó $f\left(\frac{1}{\omega}\right)\left(\frac{-1}{\omega^2}\right) = q(\omega)$ $\oint f(t) dt$ 2 \$ g(w) dw $f(\omega)$ is Ξ a holic function [ω] =[on { | w ! < | } z^{α} $(z-1)^{\beta}$, $\alpha, \beta \in G$ R = 1. R = 0. r = 0. R = 0. R = 1. R#18: " f⁽ⁿ⁾(2,) <u>h</u>! for]z-Zol<r? Cn=? (ans: it will be an infinitesum) \bigcirc it converges, at least, for 12-201<r 3

