Today: Stein $\$ 2.4$ Cauchy integral formula
S2.3 Some integral examples.
Recall:

1. If $f: \Omega \rightarrow \mathbb{C}$ continuous, and $f=F^{\prime}$ with $F$ hole. then $\oint_{\gamma} f(z) d z=0$ for $\gamma$ closed curve in $\Omega$. (need the existence of primitive)
2. Goursat The:

- if $f$ is hot's in $\Omega$, and $\gamma$ is a triangle, then

$$
\oint_{r} f d z=0
$$

3. Existence of primitive for a hol'c function in a disk.
4. Candy theorem: (from 1. and 3.)

If $f$ is hol'c in the risk $\mathbb{D}$, then

$$
\oint_{\gamma} f d z=0
$$

for all $\gamma$ closed curvein $\Omega$.

Today:
(I) Cauchy Thm for simple closed curve.

We will quote the result of Jordan's theorem:

- Let $r$ be a simple closed curve in $\mathbb{C}$, then there is an interior region $\Omega_{\text {int }}$ and an exterior region $\Omega_{\text {ext, }}$ such that $\partial \Omega_{\text {int }}=\partial \Omega_{\text {ext }}=\gamma, \Omega_{\text {int }} \cap \Omega_{\text {ext }}=\phi, \quad \mathbb{C}=\Omega_{\text {int }} U \Omega_{\text {ext }} U \gamma$.

positively oriented, $\Omega$ int
is always on your left
"Toy contour": those simple closed curve such that $\Omega$ int can be identified un ambiguously.
- We say a toy contour is oriented positively, if you walk on the curve along the orientation direction, $\Omega$ int is on your left.
- Example:
- Key hole contour:

Let $C$ be a circle, $Z_{0}$ be a point enclosed in $C$,

a keyhole contour $\Gamma_{\varepsilon, \delta}$ is
a contour that detours to go around $z_{0}$ in an $\varepsilon$-radius circle.
$\binom{$ terminology: let $A \subset \mathbb{C}$ be a closed set, we say $f$ is hol'c on $A}{$ if there is an open nothd $U$ of $A$, sit. $f$ is hole on $U}$

- "Informal Thru": Let $r$ be a toy contour, $\Omega$ int be the interior region, and $f$ is hol'c on $\overline{\Omega_{i n t}}$, then there exists a holomorphic function $F$ on $\overline{\Omega_{\text {int }}}$, such that $F^{\prime}=f$ on $\overline{\Omega i n t}$.

Pf: the same approach as $\gamma$ is the unit circle, except when we define $F$ by integration, more zigzaggy path is needed.

pick a base pt $Z_{\text {. }}$

Cauchy Integral Formula (on a disk).
Thu: Let $C=\partial D$ be the boundary of the unit disk, and $f$ is hol'c on an open nubhd s
 of $\bar{D}$, then for any $z \in \mathbb{D}$

$$
f(z)=\frac{1}{2 \pi i} \oint_{c} \frac{f(\omega)}{\omega-z} d \omega .
$$

Strategy: we will deform $C$ to a small circle of radius $\varepsilon$ near $z$, and show that the integral is invariant. Then, we will let $\varepsilon \rightarrow 0$, and evaluate the integral

$$
\frac{1}{2 \pi i} \oint_{|\omega-z|=\varepsilon} \frac{f(\omega)}{\omega-z} d \omega .
$$

Pf: (1) We use the "key-hole" contour to show

$$
\frac{1}{2 \pi i} \oint_{C} \frac{f(\omega)}{\omega-z} d \omega=\frac{1}{2 \pi i} \oint_{C_{\varepsilon}} \frac{f(\omega)}{\omega-z} d \omega
$$



- $C=$ circle of radius 1 centered at 0
$C_{\varepsilon}=$ circle of radius $\varepsilon$ centered at $z$ ( notation differ from stein).

$$
\Gamma_{2,6}=
$$

Let $\tilde{f}(\omega)=\frac{f(\omega)}{\omega-z}$, then $\tilde{f}$ is hol'c on $\overline{\Omega_{\text {int }}}$, hence. $\oint_{\Gamma_{\Sigma, \delta}} \frac{f(\omega)}{\omega-z} d z=0$.

Let the corridor width $\delta \rightarrow 0$, and notice that the integral along the
two segments on the corridor cancels out, we get the claim.
(2) Now, we prove that

$$
\begin{gathered}
\frac{1}{2 \pi i} \oint \frac{f(\omega)}{\omega-z} d \omega=f(z) . \\
C_{\varepsilon} \\
\frac{f(\omega)}{\omega-z}=\frac{f(\omega)-f(z)}{\omega-z}+\frac{f(z)}{\omega-z}
\end{gathered}
$$

$\because \lim _{\omega \rightarrow z} \frac{f(\omega)-f(z)}{\omega-z}=f^{\prime}(z) \quad \therefore \frac{f(\omega)-f(z)}{\omega-z}$ is bounded by $M$ for $|\omega-z| \leq \varepsilon_{0}$
Thus $\left|\oint_{C_{\varepsilon}} \frac{f(\omega)-f(z)}{\omega-z} d w\right| \leqslant M$. length $\left(C_{\varepsilon}\right)$ for all $\varepsilon<\varepsilon_{0}$ Since LHS is independent of $\varepsilon$, we may take limit $\varepsilon \rightarrow 0 \Rightarrow$ CHS

$$
\frac{1}{2 \pi i} \oint \frac{f(z)}{\omega-z} d \omega=f(z) \cdot \frac{1}{2 \pi i} \oint_{|\omega-z|=\varepsilon}^{\omega \in C_{\varepsilon}} \frac{1}{\omega-z} d \omega=f(z)
$$

Remark: - we can replace unit circle $C$ by any toy contour, theorem still holds.

- Keyhole contour can be used to show that: "contour integral is invariant as we deform the contour $r$ within the region where the integrand is holomorphic.".
- Can be generalized, even if $f(z)$ is not holomorphic on $\mathbb{D}$.

$$
\begin{aligned}
& f(z)=\frac{1}{2 \pi i} \oint_{\partial \mathbb{D}} \frac{f(w)}{w-z} d w+\frac{1}{2 \pi i i} \int_{\mathbb{D}} \frac{\partial f(w)}{\partial \bar{w}} \cdot \frac{1}{w-z} \underbrace{d w n d \bar{w}}_{\|} \\
& (\text {see Grifiths-Harris, ch } 0 \text { ). }
\end{aligned}
$$

- §2.3 Sample Calculations.

