
 

Todd Stein 52.4 Cauchy integral formula
52.3 Some integral examples

Recallis
If f I E continuous and f F with F hok

then fat dz D for 8 closed curve in r
needthe existenceof primitive

2 Goursat Thm infif f is hot's in R and r is a triangle then
f dz o

3 Existence of primitive for a h

inadisk.ttCauchy theorem from 1 and 3
If f is holk in the disk D then

f da O for all r closedcurveinR
r
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G CauchyThm for simpleclosedcurve

We will quote the resultof Jordan'stheorem
Let r be a simple closed curve in IC then there is an

interimregion hint and an exteriorregion Rext such that
21 int 21exe P dint NRext 0 I Dint USextU T

r
sext 7 positivelyoriented Sint

pimpledogedcurve is alwaysonyourleft
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those simple closed curve suchthat hint can be

identifiedunambiguously

Wesay a toy contour is orientedpositively if youwalk on the
curve alongthe orientation direction Sint is on your left yCold

t
Example L C

Zo
o keyhole contour 9aT.IT width g

Let C be a circle Zo radius E ftp.eyw.ie a Cold Chew
itbe a point enclosed in C 7 ifs70

a keyhole contour Te s is

a contour that detours to go around Zo in an E radius Circle

term let Ac 6 be a closed set we say f is hold onA

if there is an opennbhd UofA sit f is hotc on U

let 8 be a toycontour dint be the
interior region and f is hole on dint then there exists
a holomorphic function F on Sint such that F _f onTint

PI the same approach as 8 is the unit circle except
when we define F by integration more zigzaggy path is

pick a basePtZo
needed
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ThemLet C 8D be the boundary of the Z D open

oughify
disk and f is hole on an open rib wolfish

then for any 2 ED
fc2 kz fw dw

tz we will deform C to a small circle of
radius E near 2 and show that the integral is invariant
Then we will let E 0 and evaluate the integral
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Pf We use the keghole contour to show

ziti TIZI do II dw

y 0,13 E of L C C circle ofradius 1
centered at 0
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Cg circle of radius E

Cflip the
orientation

centered at 2Isis's main
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let f w f then f is hot'c on dint hence
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p gfw zdz
O Let the corridor width s o

and notice that the integral alongthe



twosegments on thecorridor cancels out we get the claim

Now we prove that to 0

It futz dw fez E
Cq hevalueof the integral is E indep

tweeze fwswfzd ifffz
EI.is B

lim fwwt.SI f'cz fwtw.cz is boundedby M
W Z value is e indep for 04w HEE

Thus

I ftp.fza7 dw gM a length Cs for all e e

since LHS is independent of E we maytake limit E o LHS
o
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e
du eiodead 1W 2f E ywECE Lgo.fi e eieXidoi.SdoEii I du u w 2ziti µ q

Remark i we can replace unit circle C by any toy contour
theorem still holds r ri r

Keyhole contour can be used to showthat i
Il contour integral is invariant as we deform the contour 8

withinthe region where the integrand is holomorphic

Can be generalized even if fez is not holomorphic onD

fez i fwthz dwt i.SIte.w.tzdwnomw2lDD u
Cri dxdysee Griffiths Harris Cho



82.3 Sample Calculations s is a parameter
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