$$= \int_{C} \overline{W \cdot \overline{z_{0}}} \left[- \frac{\overline{z} \cdot \overline{z_{0}}}{w - \overline{z_{0}}} - 2\pi i \right]$$
note that $p = \left[\overline{z \cdot \overline{z_{0}}} \right] < 1 + 1$ thus.

$$f(\overline{z}) = \oint_{C} \sum_{n=0}^{\infty} \frac{f(\omega)}{w - \overline{z_{0}}} \left(\frac{\overline{z} \cdot \overline{z_{0}}}{w - \overline{z_{0}}} \right)^{n} \frac{dw}{2\pi i}$$
To show that the integral and summation can switch order, it suffices
to show that $\oint_{C} \sum_{n} \left[\frac{f(\omega)}{w - \overline{z_{0}}} \cdot \frac{(\overline{z} \cdot \overline{z_{0}})^{n}}{(w - \overline{z_{0}})^{n}} \right] \left| \frac{dw}{2\pi i} \right| < \infty$

$$HS \leq \frac{\|f\|_{S}}{R} \cdot \sum_{n} p^{n} \frac{2\pi R}{2\pi} = \|f\| \cdot \frac{1}{1 - p} < \infty$$

$$f(\overline{z}) = \sum_{n=0}^{\infty} \oint_{C} \frac{f(\omega)}{w - \overline{z_{0}}} \left(\overline{z \cdot \overline{z_{0}}} \right)^{n} \frac{dw}{2\pi i}$$

$$= \sum_{n=0}^{\infty} \int_{R} \frac{f(\omega)}{w - \overline{z_{0}}} \left(\overline{z \cdot \overline{z_{0}}} \right)^{n} \frac{dw}{2\pi i}$$

$$= \sum_{n=0}^{\infty} \int_{R} \frac{f(\omega)}{w - \overline{z_{0}}} \left(\overline{z \cdot \overline{z_{0}}} \right)^{n} \frac{dw}{2\pi i}$$

$$\int_{R} \frac{f(\overline{z})}{(w - \overline{z_{0}})^{n}} \frac{f(\overline{z})}{(w - \overline{z_{0}})^{n}} \frac{f(\overline{z})}{2\pi i}$$

$$\int_{R} \frac{f(\overline{z})}{(w - \overline{z_{0})^{n}}} \frac{f(\overline{z})}{(w -$$

Let
$$\Omega$$
 be a connected open subst of C .
Then 48 f: $\Omega \rightarrow G$ holds. If there exist a convergent
distinct point Ξ_1, Ξ_2, \dots in Ω , such that $\Xi_0 = \lim Z_n \in \Omega$, and
fizition of Hn . Then, $f(\Xi)=0$. Hitch, $I = \lim Z_n \in \Omega$, and
 $f(\Xi)=0$ Hn. Then, $f(\Xi)=0$. Hitch, $I = \lim_{n \to \infty} Z_n$, i.e. fix $D_r(Z_n) \subset \Omega$.
 $f(Z) = \sum_{n=0}^{\infty} an (Z-Z_n)^n$ $\forall Z \in D_n(Z_n)$.
We claim that $an=0$ for all n . Otherwise, lat
 am be the first nonzero coeff. Then.
 $f(Z) = am(Z-Z_n)^m + amn(Z-Z_n)^{m+1} + \cdots$
 $= am(Z-Z_n)^m (1+(Z-Z_n)\cdot\sum_{n=0}^{\infty} \frac{amn(Z-Z_n)^n}{am}(Z-Z_n)^n)$
 $h(Z)$.
By continuity, $\forall \Sigma > 0$, $\exists N \leq > 0$, $st \in [Z-Z_n] \in S$.
We may choose Ξ small enough , $st \in [-Z > 0$. Hence, within
 $D_S(Z_n)$ disk , $f(Z)$ has no other zero than Z_n , contradicting
with $\lim_{n \to \infty} Z_n = Z_n$, z_n distinct, $f(Z_n)=0$.
We conclude that $f(Z)=0$ by continuity. Let
 $Z = \{Z \in SL \mid f(Z)=0\}$
and U be the interior of Z . U contains $D_r(Z_n)$ above,
hence is non-empty. But U is also closed (in Ω), since
if $Z_n \in 2M$, then we may choose Z_n distinct and converge to Z_n .
By the above argument, $f=0$ in an open disk of Z_n , hence $Z = U_n = S_n$.

Let $V = \Omega \setminus U$, "U closed in Ω . "U is open. Ω= UILV : Ω is connected. : I cannot be written as disjoint union of nonempty open. Con: Let $f_1g: \Sigma \rightarrow C$. be hold. If f=g on an open subset $U \subset SZ$, then f = q on SZ. Def: (Analytic continuation) Let S., S' be two regions, $\Omega \subset \Omega'$. $f: \Omega \to C$, $F: \Omega' \to C$ hol'c. And $F \mid \Omega = f$. Then we say F is an analytic continuation of f. Example $P(s) := \int_{D}^{\infty} e^{-t} \cdot t^{s-1} dt$ for Re(5) > 0 but r(5) can be analytically continued. · there are functions that are hol' on D, continuous on D, but cannot be extended any further. f: s -> c hol'c. Dr(Zo) C s ... power Rmk: f has Taylor series expansion around 7. $f(z) = \sum_{n=1}^{\infty} a_n (z-z_n)^n \quad \forall |z-z_n| < r.$ Q: what is the radius of convergence for ?? is it r? A: radius of convergence is possibly bigger. Thu (Morera): If f: I > C continuous, and if for all triangles T in SZ.

 $(*) \quad \int_T f \, dz = 0$ Then f is holomorphic in S. Pf: the hypothesis (it) is the output of Goursat theorem. thus, we can find primitive F for f, i.e. F' = f. Nous Fisholic F⁽ⁿ⁾ isholic. I fisholic. F is analytic $\Rightarrow F^{(m)}$ is analytic. Sequence of holic functions. thm: f1, f2, f3, -- be a sequence of holic on S2. · assume that $\lim_{n \to 0} f_n(z) = f(z)$ uniformly on every compact subset of Ω . - UKCES compact. UN S.t. $\sup |f_n(z) - f(z)| < \mathcal{Z}.$ them: fis holic in S. ZEK Pf: We are going to show that, for all T triangles in S, $\int_{T} f dz = 0.$ ". T is a compact set. $f_n \rightarrow f$ on T uniformly. $\int_T f dz = \lim_{n \to \infty} \int_T f_n dz = 0.$ i. By Morera thm, fishdic.