Today: Finish power series.

- begin integration along curves.

Power series:

- Definition: $\quad \sum_{n=0}^{\infty} a_{n} \cdot z^{n}$. radius of convergence R : if $|z|>R$, diverge.
How to determine R ?
- $\frac{1}{R}=\lim _{n \rightarrow \infty}\left|a_{n}\right|^{\frac{1}{n}}$. Hadamard formula.
- if $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|$ exist, then it equals. $\frac{1}{R}$. (problem 17).
- Convergence of functions: $f_{1}, f_{2}, f_{3}, \cdots$ a seq of fun on a - different mode of convergeme:
- pointwise convergeme: $\forall z \in \Omega, \quad f_{2}(z), f_{2}(z), f_{3}(z), \cdots \rightarrow$
- uniform convergence: $\forall \varepsilon>0, \exists N$. (indep off z), s.t.

$$
\sup _{z \in \Omega .}\left|f_{i}(z)-f(z)\right|<\varepsilon . \quad \forall i>N .
$$

(not uniform convergence example : $f_{n}(x)=\frac{1}{n \cdot x^{2}}$

on $\Omega=(0, \infty)$. $f_{n}(x)$ converges pointwise to zero. but not uniformly.
(not uniform conn. ex:

(4) $(x)=\left\{\begin{array}{cc}0 & x<0 \\ 1 / 2 & x=0 \\ 1 & x>0\end{array}\right.$

$$
f_{n}(x)=\operatorname{erf}(n \cdot x) .
$$

$\mathbb{P}(X<x) \quad X:$ normal $=\int_{-\infty}^{x} e^{-t^{2} / 2} \frac{d t}{\sqrt{2 \pi}}$.
under pointwise convergeme, we cannot preserve continuity).

Thm: (2.6) If $\sum_{n=0}^{\infty} a_{n} \cdot z^{n}$ converges, with radius of conv. $0<R$, and let $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ on $\{|z|<R\}$. Then $f(z)$ is holomorphic, and its derivative is given by. (taking derivative $g(z)=\sum_{n=0}^{\infty} a_{n} \cdot n \cdot z^{n-1} \quad$ (ermwise). termwise).
started with $n=1$) and this serie has radius of convergeme R.
proof: (1) cheek $\sum_{n=0}^{\infty} a_{n} \cdot n \cdot z^{n-1}$ has the same radius of conn.

$$
\limsup _{n \rightarrow \infty}\left|a_{n} \cdot n\right|^{\frac{1}{n}}=\left(\lim _{n \rightarrow \infty} \sup \left|a_{n}\right|^{\frac{1}{n}}\right) \cdot\left(\lim _{n \rightarrow \infty} \cdot n^{\frac{1}{n}}\right)=\lim _{n \rightarrow \infty} \sup \left|a_{n}\right|^{\frac{1}{n}} .
$$

claim: $\lim _{n \rightarrow \infty .} n^{\frac{1}{n}}=1 \Leftrightarrow \lim _{n \rightarrow \infty} \log \left(n^{\frac{1}{n}}\right)=0$

$$
\Leftrightarrow \lim _{n \rightarrow \infty} \frac{1}{n} \log n=0 .
$$

claim: $\lim _{n \rightarrow \infty} \sup \left|a_{n+m}\right|^{\frac{1}{n}}=\limsup _{n \rightarrow \infty}\left|a_{n}\right|^{\frac{1}{n}} \quad(m>0)$
idea:

$$
\begin{array}{r}
\left.\operatorname{limsup.}_{n \rightarrow \infty}\left[\left|a_{n+m}\right|^{\frac{1}{n+m}}\right] \stackrel{n+m}{n}\right) \stackrel{1}{!} \lim _{n \rightarrow \infty} \sup \mid a_{n} \\
=\lim _{n \rightarrow \infty} \sup _{n} \\
\left(\limsup _{n \rightarrow \infty} c_{n} d_{n}=\limsup _{n \rightarrow \infty .} c_{n} \quad \text { if } d_{n} \rightarrow 1 .\right)
\end{array}
$$

(2). Want prove $f(z)$ has complex derivative for any
z. s.t. $|z|<R$. Assume r is small enough, that $D_{2 r}(z) \subset D_{R}(0)$. We wat fo show, $\forall \varepsilon>0$, $\exists \delta>0$, s.t. $\forall|h|<\delta$. we have.

$$
\left|\frac{f(z+h)-f(z)}{h}-g(z)\right|<3 \varepsilon
$$

$$
\begin{aligned}
& g(z)=\sum_{n=1}^{N} a_{n} \cdot n \cdot z^{n-1}+\sum_{n=N+1}^{\infty} a_{n} \cdot n \cdot z^{n-1} . \\
& =\quad g^{(N)}(z)+\tilde{g}^{(N)}(z) \text {. } \\
& G(z, h)=\frac{f(z+h)-f(z)}{h}=\sum_{n=0}^{\infty} \frac{a_{n} \cdot(z+h)^{n}-a_{n} \cdot z^{n}}{h .} \\
& =\sum_{n=0}^{N} a_{n} \cdot \frac{(z+h)^{n}-z^{n}}{h}+\sum_{n=N+1}^{\infty} a_{n} \cdot \frac{(z+h)^{n}-z^{n}}{h .} \\
& =G^{(N)}(z, h)+\tilde{G}^{(N)}(z, h) \\
& \uparrow \text { tail } \\
& |G(z, h)-g(z)|=\left|G^{(N)}(z, h)-g^{(N)}(z)+\tilde{G}^{(N)}(z, h)-\tilde{g}^{(N)}(z)\right| \text {. } \\
& \leqslant\left|G^{(N)}(z, h)-g^{(N)}(t)\right|+\left|\tilde{G}^{(N)}(z, h)\right|+\left|\tilde{g}^{(n)}(z)\right| \text {. }
\end{aligned}
$$

(1) There exist N_{1}. such that, $\forall N>N_{1}$,

$$
\left|\tilde{g}^{(N)}(z)\right|<\varepsilon .
$$

(This is because the series $\sum_{n=1}^{\infty} a_{n} \cdot n \cdot z^{n-1}$. converge. hence. the tail can be made as small as one wants.).

trouble $\binom{n}{k}$ can be large, though with some work, it might be cared by h^{k}.

$$
a^{n}-b^{n}=(a-b)\left(a^{n-1}+a^{n-2} \cdot b+a^{n-3} \cdot b^{2}+\cdots+b^{n-1}\right)
$$

thus.

$$
\begin{aligned}
& (z+h)^{n}-z^{n}=h \cdot\left((z+h)^{n-1}+(z+h)^{n-2} \cdot z+\cdots+z^{n-1}\right) . \\
& \frac{(z+h)^{n}-z^{n}}{h}\left|=\left|(z+h)^{n-1}+(z+h)^{n-2} \cdot z+\cdots+z^{n-1}\right|\right.
\end{aligned}
$$

if $|h|<r$, then. $|z|$ and $|z+h|<R-r$

$$
\leqslant n \cdot(R-r)^{n-1} .
$$

$$
\left|G^{n(N)}(z, n)\right|<\sum_{n=N+1}^{\infty} a_{n} \cdot n \cdot(R-r)^{n-1} \quad \forall|h|<r .
$$

again. $\exists N_{2}$, sit. $\forall N>N_{2}, \quad\left|\tilde{G}^{(n)}(z, h)\right|<\varepsilon$.
(3). Now for the main part. $\left|G^{(N)}(z, h)-g^{(N)}(z)\right|$.

Let's fix an $N, N>N_{1}, N>N_{2}$. then.
\because the polynomial $\sum_{n=0}^{N} a_{n} \cdot z^{n}$ has derivative $\sum_{n=0}^{N} a_{n} \cdot n \cdot z^{n-1}$.

$$
\therefore G^{(N)}(z \cdot h)=\frac{\sum_{n=0}^{N} a_{n}(z+h)^{n}-\sum_{n=0}^{N} a_{n} \cdot z^{n}}{h} \rightarrow g^{(N)}(z)
$$

as $h \rightarrow 0$.
in other words, $\exists \delta_{N}>0$, s.t. $\forall|h|<\delta_{N}$. we have.

$$
\left|G^{(N)}(z, h)-g^{(N)}(z)\right|<\varepsilon .
$$

So we have found a δ., sit. $\forall|h|<\delta$.

$$
|G(z, h)-g(z)|<3 \varepsilon .
$$

\Rightarrow complex derivative of $f(z)$ exist at point z

Cor: A power series is infinitely complex differentiable. in its disc of convergame. And all derivatives. $f^{(n)}(z)$ are holomorphic., and equals the termuise differentiation.

$$
f^{(k)}(z)=\sum_{n=0}^{\infty} a_{n}\left(\frac{d}{d z}\right)^{k}\left(z^{n}\right)
$$

3. Integration along curves.

- what is a curve (in \mathbb{C})?
- parametrized $\frac{\text { smooth }}{\text { curve }}$:
$a\left(C^{\prime}\right)$ smooth $\operatorname{map} \gamma:[a, b] \rightarrow C$.
we also need a technical condition: $\underbrace{\gamma^{\prime}(t) \neq 0}$ for all $t \in[a, b]$.
- parametrized piecewise smooth curve.

why we need $\gamma^{\prime}(t) \neq 0$?
To aroid some weird curves:

$$
\gamma:[0,1] \rightarrow \mathbb{C}
$$

$$
\gamma(t)=e^{-\frac{1}{t}+\frac{i}{t}}
$$

indeed $\quad|\gamma(t)|=e^{-\frac{1}{t}} \rightarrow 0 \quad$ as $t \rightarrow 0^{+}$

$$
\arg (r(t))=i / t
$$

- (unparametrized) curve. $=$ consider all equivalent parametrization of the curve. pavan curve.
\sim
- Integration on a curve:

$$
\begin{array}{r}
f: \Omega(\mathbb{C} \\
\gamma:[0,1] \rightarrow \Omega \\
\int_{\gamma} f d z:=\int_{d} f(z(t)) \cdot \gamma^{\prime}(t) \cdot d t
\end{array}
$$

hol'c function smooth curve. \star integration with complex integrand.

To show next time., if we use equivalent param

$$
\begin{gathered}
\tilde{\gamma}:[a, b] \rightarrow \Omega \\
\tilde{\gamma}\left(t^{\prime}(t)\right)=\text { st. } \exists t^{\prime}(t), \\
t^{\prime}:[0,1] \rightarrow[a, b] .
\end{gathered}
$$

then, we get the same result for integral.

