Math 185 Take home Final

Name:

Dec 15-17, 2020

e You have 48 hours to complete the exam: from Dec 15, 12noon(PST) to

Dec 17, 12noon.

e Please upload your solution in a single pdf to gradescope.

e Please provides all intermediate steps for calculation problems and justi-
fications for proof based problems.

e This is a open-book exam, you can use your textbooks, lecture notes and
homework solutions. You can only quote results contained in the above

sources.

e No calculator should be used. No searches on internet are allowed.

e The final should reflect your own understanding. No discussion or collab-

oration of any sorts are allowed.

e If you have question during the exam, you may contact me use zoom direct

message or via email.

Good Luck!
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We use D = {z: |z] < 1} for the open unit disk, C' = 9D for its boundary,
i.e the unit circle, and C for the extended complex plane C U {oo}.

1. (10 points, 2 points each)
(1) What is the definition of a holomorphic function? What is the Cauchy-
Riemann condition?

2

3

) What is the definition of radius of convergence for a power series?
)
4) What is normal family and the Arzela-Ascoli theorem?
)
0

What is the maximum principle for holomorphic function?

5) What is the Riemann mapping theorem?

10 points, 2 points each) True or False. Please provide your reasoning.

(
(
(
(
(
(

1) If f is a holomorhpic function on D and f vanishes on infinitely many
points z1, 29, -+ in D, then f has to be zero.

(2) If f is a holomorphic function on D, and |f| is constant, then f has to
be constant as well.

(3) For any a € D, the function f(z) = (a — 2)/(1 — @z) is a bijection from
D to D.

(4) Let f,, be a sequence of holomorphic functions on D, such that f, con-
verges uniformly on every compact subset of D, then

f(z) = lim fu(2), z€D

is holomorphic on D.

(5) If f is a holomorphic function on a neighborhood of the unit circle C,
then there always exist holomorphic functions f; on {|z| < 1} and f; on
{|z| > 1}, such that f(z) = f1(2) — fa(2) for all |z] = 1.

3. Let f = 25 + 5.

(1) (5 points) Compute the Taylor series expansion centered at z = 0. What
is the radius of convergence?

z

(2) (5 points) Compute the Laurent series expansion of f on the annulus
1 < |z| < 2. i.e. find the coefficients b,,, such that

flz)= Y bpe", foralll<|z] <2

n=—oo

4. Compute the following integrals.

(1) (3 points) .
[



(2) (3 points)
/ R S
—oo (@) (z +20)
(3) (4 points)

. (10 points) If Q(z) is a polynomial with distinct roots aq, - - , oy, and P(z) is
a polynomial with degree less than n, then show that we have partial fraction
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. (10 points) (a) (5 points) Let f be a holomorphic function defined in a neigh-
borhood of D, such that |f(2)] =1 for |z|] =1 and f(2) # 0 for |z| < 1. Show
that f is a constant.

(b) (5 points) Let f be a holomorphic function defined in a neighborhood
of D, such that |f(z)| = 1 for |z| = 1. Show that f can be extended to a
rational function on C and there are no roots of f outside D.

. (10 points) If the power series ) a,z" has radius of convergence R; > 0
and ) b,2" has radius of convergences Ry > 0, show that the radius of
convergence of the power series ) a,b,2" is at least RiRs.

. (10 points) In each of the following cases, write down an entire function f(z)
such that,

(1) (5 points) f has simple zeros exactly at z = n? withn =1,2,3,---.

(2) (5 points) f has simple zeros exactly at z =n withn =1,2,3,---.

. (10 points) Normal Family for holomorphic functions.

(1) (5 points) Let @ = {|]z] < 1/2}, and let F be a family of holomorphic
function on 2, consisting of polynomials of the form

f(Z)Z(Z—a1)~.~(z—an), |CLZ‘|<]_/2, \V/Zzl,,n

Is F a normal family on Q7 Justify your anwer.

(2) (5 points) Let Q = {|z| < 1}, and let F be a family of holomorphic
function on 2, consisting of

1
= , > 1, < 1.
fE) =\ lal>1, [

Is F a normal family on 7 Justify your anwer.



10. (10 points) Let f be a holomorphic function defined on the upper half-plane
H = {z : Im(z) > 0}, such that for any z € H, we have Im(f(z)) > 0. Show
that for any z, zg € H, we have

|f(2) = f(20)] < |Z—Zo\.
1f(z) = f(z0)| ~ |2 =70l

Hint: For any a € H, the map

zZ—Q

Z —
z—a

is a biholomorphic map from H to ID. Then use Schwarz lemma.
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