## Name:

$\qquad$

- You have 48 hours to complete the exam: from Dec 15, 12noon(PST) to Dec 17, 12noon.
- Please upload your solution in a single pdf to gradescope.
- Please provides all intermediate steps for calculation problems and justifications for proof based problems.
- This is a open-book exam, you can use your textbooks, lecture notes and homework solutions. You can only quote results contained in the above sources.
- No calculator should be used. No searches on internet are allowed.
- The final should reflect your own understanding. No discussion or collaboration of any sorts are allowed.
- If you have question during the exam, you may contact me use zoom direct message or via email.


## Good Luck!

| Question | Points | Score |
| :---: | :---: | :---: |
| 1 | 10 |  |
| 2 | 10 |  |
| 3 | 10 |  |
| 4 | 10 |  |
| 5 | 10 |  |
| 6 | 10 |  |
| 7 | 10 |  |
| 8 | 10 |  |
| 9 | 10 |  |
| 10 | 10 |  |
| Total | 100 |  |

We use $\mathbb{D}=\{z:|z|<1\}$ for the open unit disk, $C=\partial \mathbb{D}$ for its boundary, i.e the unit circle, and $\widehat{\mathbb{C}}$ for the extended complex plane $\mathbb{C} \cup\{\infty\}$.

1. (10 points, 2 points each)
(1) What is the definition of a holomorphic function? What is the CauchyRiemann condition?
(2) What is the definition of radius of convergence for a power series?
(3) What is the maximum principle for holomorphic function?
(4) What is normal family and the Arzela-Ascoli theorem?
(5) What is the Riemann mapping theorem?
2. (10 points, 2 points each) True or False. Please provide your reasoning.
(1) If $f$ is a holomorhpic function on $\mathbb{D}$ and $f$ vanishes on infinitely many points $z_{1}, z_{2}, \cdots$ in $\mathbb{D}$, then $f$ has to be zero.
(2) If $f$ is a holomorphic function on $\mathbb{D}$, and $|f|$ is constant, then $f$ has to be constant as well.
(3) For any $a \in \mathbb{D}$, the function $f(z)=(a-z) /(1-\bar{a} z)$ is a bijection from $\mathbb{D}$ to $\mathbb{D}$.
(4) Let $f_{n}$ be a sequence of holomorphic functions on $\mathbb{D}$, such that $f_{n}$ converges uniformly on every compact subset of $\mathbb{D}$, then

$$
f(z)=\lim _{n \rightarrow \infty} f_{n}(z), \quad z \in \mathbb{D}
$$

is holomorphic on $\mathbb{D}$.
(5) If $f$ is a holomorphic function on a neighborhood of the unit circle $C$, then there always exist holomorphic functions $f_{1}$ on $\{|z| \leq 1\}$ and $f_{2}$ on $\{|z| \geq 1\}$, such that $f(z)=f_{1}(z)-f_{2}(z)$ for all $|z|=1$.
3. Let $f=\frac{1}{z-1}+\frac{1}{z-2}$.
(1) (5 points) Compute the Taylor series expansion centered at $z=0$. What is the radius of convergence?
(2) (5 points) Compute the Laurent series expansion of $f$ on the annulus $1<|z|<2$. i.e. find the coefficients $b_{n}$, such that

$$
f(z)=\sum_{n=-\infty}^{\infty} b_{n} z^{n}, \quad \text { for all } 1<|z|<2
$$

4. Compute the following integrals.
(1) (3 points)

$$
\int_{|z|=2} \frac{e^{z}}{z(z-1)} d z
$$

(2) (3 points)

$$
\int_{-\infty}^{+\infty} \frac{1}{(x+i)(x+2 i)} d x
$$

(3) (4 points)

$$
\int_{|z|=1} \frac{1}{\sin (1 / z)} d z
$$

5. (10 points) If $Q(z)$ is a polynomial with distinct roots $\alpha_{1}, \cdots, \alpha_{n}$, and $P(z)$ is a polynomial with degree less than $n$, then show that we have partial fraction

$$
\frac{P(z)}{Q(z)}=\sum_{i=1}^{n} \frac{P\left(\alpha_{i}\right)}{Q^{\prime}\left(\alpha_{i}\right)\left(z-\alpha_{i}\right)}
$$

6. (10 points) (a) (5 points) Let $f$ be a holomorphic function defined in a neighborhood of $\overline{\mathbb{D}}$, such that $|f(z)|=1$ for $|z|=1$ and $f(z) \neq 0$ for $|z|<1$. Show that $f$ is a constant.
(b) (5 points) Let $f$ be a holomorphic function defined in a neighborhood of $\overline{\mathbb{D}}$, such that $|f(z)|=1$ for $|z|=1$. Show that $f$ can be extended to a rational function on $\mathbb{C}$ and there are no roots of $f$ outside $\mathbb{D}$.
7. (10 points) If the power series $\sum_{n} a_{n} z^{n}$ has radius of convergence $R_{1}>0$ and $\sum_{n} b_{n} z^{n}$ has radius of convergences $R_{2}>0$, show that the radius of convergence of the power series $\sum_{n} a_{n} b_{n} z^{n}$ is at least $R_{1} R_{2}$.
8. (10 points) In each of the following cases, write down an entire function $f(z)$ such that,
(1) (5 points) $f$ has simple zeros exactly at $z=n^{2}$ with $n=1,2,3, \cdots$.
(2) (5 points) $f$ has simple zeros exactly at $z=n$ with $n=1,2,3, \cdots$.
9. (10 points) Normal Family for holomorphic functions.
(1) (5 points) Let $\Omega=\{|z|<1 / 2\}$, and let $\mathcal{F}$ be a family of holomorphic function on $\Omega$, consisting of polynomials of the form

$$
f(z)=\left(z-a_{1}\right) \cdots\left(z-a_{n}\right), \quad\left|a_{i}\right|<1 / 2, \quad \forall i=1, \cdots, n .
$$

Is $\mathcal{F}$ a normal family on $\Omega$ ? Justify your anwer.
(2) (5 points) Let $\Omega=\{|z|<1\}$, and let $\mathcal{F}$ be a family of holomorphic function on $\Omega$, consisting of

$$
f(z)=\frac{1}{z-a}, \quad|a|>1, \quad|z|<1
$$

Is $\mathcal{F}$ a normal family on $\Omega$ ? Justify your anwer.
10. (10 points) Let $f$ be a holomorphic function defined on the upper half-plane $\mathbb{H}=\{z: \operatorname{Im}(z)>0\}$, such that for any $z \in \mathbb{H}$, we have $\operatorname{Im}(f(z)) \geq 0$. Show that for any $z, z_{0} \in \mathbb{H}$, we have

$$
\frac{\left|f(z)-f\left(z_{0}\right)\right|}{\left|f(z)-\overline{f\left(z_{0}\right)}\right|} \leq \frac{\left|z-z_{0}\right|}{\left|z-\overline{z_{0}}\right|}
$$

Hint: For any $a \in \mathbb{H}$, the map

$$
z \mapsto \frac{z-a}{z-\bar{a}}
$$

is a biholomorphic map from $\mathbb{H}$ to $\mathbb{D}$. Then use Schwarz lemma.

