Name:

- You have 48 hours to complete the exam: from Dec 15, 12noon(PST) to Dec 17, 12noon.
- Please upload your solution in a single pdf to gradescope.
- Please provides all intermediate steps for calculation problems and justifications for proof based problems.
- This is a open-book exam, you can use your textbooks, lecture notes and homework solutions. You can only quote results contained in the above sources.
- No calculator should be used. No searches on internet are allowed.
- The final should reflect your own understanding. No discussion or collaboration of any sorts are allowed.
- If you have question during the exam, you may contact me use zoom direct message or via email.

Good Luck!

Question	Points	Score
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
8	10	
9	10	
10	10	
Total	100	

We use $\mathbb{D} = \{z : |z| < 1\}$ for the open unit disk, $C = \partial \mathbb{D}$ for its boundary, i.e the unit circle, and $\widehat{\mathbb{C}}$ for the extended complex plane $\mathbb{C} \cup \{\infty\}$.

- 1. (10 points, 2 points each)
 - (1) What is the definition of a holomorphic function? What is the Cauchy-Riemann condition?
 - (2) What is the definition of radius of convergence for a power series?
 - (3) What is the maximum principle for holomorphic function?
 - (4) What is normal family and the Arzela-Ascoli theorem?
 - (5) What is the Riemann mapping theorem?
- 2. (10 points, 2 points each) True or False. Please provide your reasoning.
 - (1) If f is a holomorphic function on \mathbb{D} and f vanishes on infinitely many points z_1, z_2, \cdots in \mathbb{D} , then f has to be zero.
 - (2) If f is a holomorphic function on \mathbb{D} , and |f| is constant, then f has to be constant as well.
 - (3) For any $a \in \mathbb{D}$, the function $f(z) = (a-z)/(1-\overline{a}z)$ is a bijection from \mathbb{D} to \mathbb{D}
 - (4) Let f_n be a sequence of holomorphic functions on \mathbb{D} , such that f_n converges uniformly on every compact subset of \mathbb{D} , then

$$f(z) = \lim_{n \to \infty} f_n(z), \quad z \in \mathbb{D}$$

is holomorphic on \mathbb{D} .

- (5) If f is a holomorphic function on a neighborhood of the unit circle C, then there always exist holomorphic functions f_1 on $\{|z| \leq 1\}$ and f_2 on $\{|z| \geq 1\}$, such that $f(z) = f_1(z) f_2(z)$ for all |z| = 1.
- 3. Let $f = \frac{1}{z-1} + \frac{1}{z-2}$.
 - (1) (5 points) Compute the Taylor series expansion centered at z=0. What is the radius of convergence?
 - (2) (5 points) Compute the Laurent series expansion of f on the annulus 1 < |z| < 2. i.e. find the coefficients b_n , such that

$$f(z) = \sum_{n=-\infty}^{\infty} b_n z^n$$
, for all $1 < |z| < 2$

- 4. Compute the following integrals.
 - (1) (3 points)

$$\int_{|z|=2} \frac{e^z}{z(z-1)} dz$$

$$\int_{-\infty}^{+\infty} \frac{1}{(x+i)(x+2i)} dx$$

$$\int_{|z|=1} \frac{1}{\sin(1/z)} dz$$

5. (10 points) If Q(z) is a polynomial with distinct roots $\alpha_1, \dots, \alpha_n$, and P(z) is a polynomial with degree less than n, then show that we have partial fraction

$$\frac{P(z)}{Q(z)} = \sum_{i=1}^{n} \frac{P(\alpha_i)}{Q'(\alpha_i)(z - \alpha_i)}$$

- 6. (10 points) (a) (5 points) Let f be a holomorphic function defined in a neighborhood of $\overline{\mathbb{D}}$, such that |f(z)| = 1 for |z| = 1 and $f(z) \neq 0$ for |z| < 1. Show that f is a constant.
 - (b) (5 points) Let f be a holomorphic function defined in a neighborhood of $\overline{\mathbb{D}}$, such that |f(z)| = 1 for |z| = 1. Show that f can be extended to a rational function on \mathbb{C} and there are no roots of f outside \mathbb{D} .
- 7. (10 points) If the power series $\sum_n a_n z^n$ has radius of convergence $R_1 > 0$ and $\sum_n b_n z^n$ has radius of convergences $R_2 > 0$, show that the radius of convergence of the power series $\sum_n a_n b_n z^n$ is at least $R_1 R_2$.
- 8. (10 points) In each of the following cases, write down an entire function f(z) such that,
 - (1) (5 points) f has simple zeros exactly at $z = n^2$ with $n = 1, 2, 3, \cdots$
 - (2) (5 points) f has simple zeros exactly at z = n with $n = 1, 2, 3, \cdots$.
- 9. (10 points) Normal Family for holomorphic functions.
 - (1) (5 points) Let $\Omega = \{|z| < 1/2\}$, and let \mathcal{F} be a family of holomorphic function on Ω , consisting of polynomials of the form

$$f(z) = (z - a_1) \cdots (z - a_n), \quad |a_i| < 1/2, \quad \forall i = 1, \cdots, n.$$

Is \mathcal{F} a normal family on Ω ? Justify your anwer.

(2) (5 points) Let $\Omega = \{|z| < 1\}$, and let \mathcal{F} be a family of holomorphic function on Ω , consisting of

$$f(z) = \frac{1}{z-a}, \quad |a| > 1, \quad |z| < 1.$$

Is \mathcal{F} a normal family on Ω ? Justify your anwer.

10. (10 points) Let f be a holomorphic function defined on the upper half-plane $\mathbb{H} = \{z : Im(z) > 0\}$, such that for any $z \in \mathbb{H}$, we have $Im(f(z)) \geq 0$. Show that for any $z, z_0 \in \mathbb{H}$, we have

$$\frac{|f(z) - f(z_0)|}{|f(z) - \overline{f(z_0)}|} \le \frac{|z - z_0|}{|z - \overline{z_0}|}.$$

Hint: For any $a \in \mathbb{H}$, the map

$$z\mapsto \frac{z-a}{z-\overline{a}}$$

is a biholomorphic map from $\mathbb H$ to $\mathbb D.$ Then use Schwarz lemma.