∀ E>O, let S>O be small enough, such that S< f and P.S<E. Then, IfEF, DZI, ZZEE, with ZI-ZZIXS, we have. If (Zi)-f(Zi) < 2. proving equi continuity of F on E. ŧ 2. Hurwitz thm. (Ahlfors P178) If functions fr(z) are analytric and non-vanishing in a region Ω , and if $f_n(z) \rightarrow f(z)$, uniformly, on every compact subset in S_2 , then f(Z) is either non-zero non-vanishing on S to or identically zero. 野: Prove by contradition. Suppose f美O, and JZ,GD, sit. f(Zo) = 0. Then there is a small disk Br(Zo) CSL, sit. $f(z) = \frac{1}{B \setminus \frac{3}{2} + 0}$. Then $\frac{1}{2\pi i} \int \frac{f'(z)}{f(z)} dz \neq 0$. However, $\lim_{n \to \infty} \frac{1}{2\pi i} \int \frac{f_n(z)}{f_n(z)} dz = \frac{1}{2\pi i} \int \frac{f'(z)}{f(z)} dz = \frac{1}{2\pi i} \int \frac{f'(z)}{f(z)} dz = 0$ since $f_n(z) \rightarrow f(z)$ and $f'_n(z) \rightarrow f'(z)$, $\forall z \in \partial B$, and convergence is uniform on the compact set 2B. Hence, contradiction with $\frac{1}{2\pi i} \int \frac{f_n(z)}{f_n(z)} dz = \# \text{ of zero of } f_n(z) \text{ inside } B = 0.$ (This is essentially the same proof as Rouché theorem). (map from disk to disk). 3. Schwarz Lemma (Stein Pris). Let $f: D \rightarrow D$ be holic with f(o)=0. Then () $|f(z)| \leq |z|$ for all $z \in D$

(a) If for some
$$Z_{h} \in \mathbb{D}$$
, $|f(Z_{h})| = |Z_{h}|$, then f is a rotation
(b) $|f'(N)| \leq 1$. And if equality holds, f is a rotation.
(c) $|f'(N)| \leq 1$. And if equality holds, f is a rotation.
If $(N) = L_{h}$, $|f(Z_{h})| = f(Z_{h})/Z_{h}$ for $Z \in \mathbb{D} \setminus \{0\}$. Then near $Z = 0$,
are Taylor expansion, $f(Z_{h}) = a_{h} + a_{h}Z + a_{h}Z_{h}^{2} + \cdots$, and follow
the have $a_{h} = 0$, Hence $g(Z) = a_{h} + a_{h}Z + a_{h}Z_{h}^{2} + \cdots$, and follow
Thus $Z = 0$ is a removable singularity for $g(Z_{h})$.
If $|Z| = r < 1$, then $|G(Z_{h})| = |\frac{f(Z_{h})}{r}| \leq \frac{1}{r}$. Hence
 $\sup_{X \neq 0} |g(Z_{h})| = \lim_{h \to 1} \sup_{X \neq h} |g(Z_{h})| = \lim_{h \to 1} \sup_{X \neq h} |g(Z_{h})| \leq \lim_{h \to 1} \frac{1}{r} = 1$.
 $|Z_{h} < 1| = 1$

•
$$\Omega = D$$
, $\alpha \in D$. (Blaska factor)
 $F_{\alpha}(2) := \frac{\alpha \cdot z}{1 - \alpha \cdot z}$ $D \rightarrow D$ automorphism.
s.d. $F_{\alpha} \cdot F_{\alpha} = id$. $F_{\alpha}(\alpha) = \alpha$
 $f(\alpha) = \alpha$ D is an automorphism. then
 $f(\alpha) = \alpha$ $\alpha \in \alpha$ mighting as
 $f(\alpha) = \alpha$ $\alpha \in \alpha$.
 $f(\alpha) = \alpha$ $\alpha \in \alpha$ α $\alpha \in D$.
 $P_{\alpha}^{\alpha} := \frac{1}{2} \cdot \frac{\alpha - z}{1 - \alpha \cdot z}$.
 $for some $\theta \in [\alpha, nc)$, $\alpha \in D$.
 $P_{\alpha}^{\alpha} := \frac{1}{2} \cdot \frac{\beta}{1 - \alpha \cdot z}$.
 $for some $\theta \in [\alpha, nc)$, $\alpha \in D$.
 $P_{\alpha}^{\alpha} := \frac{1}{2} \cdot \frac{\beta}{1 - \alpha \cdot z}$.
 $f(\alpha) = \frac{1}{2} \cdot \frac{\beta}{1 - \alpha \cdot z}$
 $f(\alpha) = \frac{1}{2} \cdot \frac{\beta}{1 - \alpha \cdot z}$
 $f(\alpha) = \frac{1}{2} \cdot \frac{\beta}{1 - \alpha \cdot z}$.
 $f(\alpha) = \frac{1}{2} \cdot \frac{\beta}{1 - \alpha \cdot z}$.
 $f(\alpha) = \frac{1}{2} \cdot \frac{\beta}{1 - \alpha \cdot z}$.
 $f(\alpha) = \frac{1}{2} \cdot \frac{\beta}{1 - \alpha \cdot z}$.
 $f(\alpha) = \frac{1}{2} \cdot \frac{\beta}{1 - \alpha \cdot z}$.
 $f(\alpha) = \frac{1}{2} \cdot \frac{\beta}{1 - \alpha \cdot z}$.
 $f(\alpha) = \frac{1}{2} \cdot \frac{\beta}{1 - \alpha \cdot z}$.
 $f(\alpha) = \frac{1}{2} \cdot \frac{\beta}{1 - \alpha \cdot z}$.
 $f(\alpha) = \frac{1}{2} \cdot \frac{\beta}{1 - \alpha \cdot z}$.
 $f(\alpha) = \frac{1}{2} \cdot \frac{\beta}{1 - \alpha \cdot z}$.
 $f(\alpha) = \frac{1}{2} \cdot \frac{\beta}{1 - \alpha \cdot z}$.
 $f(\alpha) = \frac{1}{2} \cdot \frac{\beta}{1 - \alpha \cdot z}$.
 $f(\alpha) = \frac{1}{2} \cdot \frac{\beta}{1 - \alpha \cdot z}$.
 $f(\alpha) = \frac{1}{2} \cdot \frac{\beta}{1 - \alpha \cdot z}$.
 $f(\alpha) = \frac{1}{2} \cdot \frac{\beta}{1 - \alpha \cdot z}$.
 $f(\alpha) = \frac{1}{2} \cdot \frac{\beta}{1 - \alpha \cdot z}$.
 $f(\alpha) = \frac{1}{2} \cdot \frac{\beta}{1 - \alpha \cdot z}$.
 $f(\alpha) = \frac{1}{2} \cdot \frac{\beta}{1 - \alpha \cdot z}$.
 $f(\alpha) = \frac{1}{2} \cdot \frac{\beta}{1 - \alpha \cdot z}$.
 $f(\alpha) = \frac{1}{2} \cdot \frac{\beta}{1 - \alpha \cdot z}$.
 $f(\alpha) = \frac{1}{2} \cdot \frac{\beta}{1 - \alpha \cdot z}$.
 $f(\alpha) = \frac{1}{2} \cdot \frac{\beta}{1 - \alpha \cdot z}$.
 $f(\alpha) = \frac{1}{2} \cdot \frac{\beta}{1 - \alpha \cdot z}$.
 $f(\alpha) = \frac{1}{2} \cdot \frac{\beta}{1 - \alpha \cdot z}$.
 $f(\alpha) = \frac{1}{2} \cdot \frac{\beta}{1 - \alpha \cdot z}$.
 $f(\alpha) = \frac{1}{2} \cdot \frac{\beta}{1 - \alpha \cdot z}$.
 $f(\alpha) = \frac{1}{2} \cdot \frac{\beta}{1 - \alpha \cdot z}$.
 $f(\alpha) = \frac{1}{2} \cdot \frac{\beta}{1 - \alpha \cdot z}$.
 $f(\alpha) = \frac{1}{2} \cdot \frac{\beta}{1 - \alpha \cdot z}$.
 $f(\alpha) = \frac{1}{2} \cdot \frac{\beta}{1 - \alpha \cdot z}$.
 $f(\alpha) = \frac{1}{2} \cdot \frac{\beta}{1 - \alpha \cdot z}$.
 $f(\alpha) = \frac{1}{2} \cdot \frac{\beta}{1 - \alpha \cdot z}$.
 $f(\alpha) = \frac{1}{2} \cdot \frac{\beta}{1 - \alpha \cdot z}$.
 $f(\alpha) = \frac{1}{2} \cdot \frac{\beta}{1 - \alpha \cdot z}$.
 $f(\alpha) = \frac{1}{2} \cdot \frac{\beta}{1 - \alpha \cdot z}$.
 $f(\alpha) = \frac{1}{2} \cdot \frac{\beta}{1 - \alpha \cdot z}$.
 $f(\alpha) = \frac{1}{2} \cdot \frac{\beta}{1 - \alpha \cdot z}$.
 $f(\alpha) = \frac{1}{2} \cdot \frac{\beta}{1 - \alpha \cdot z}$.
 $f(\alpha) = \frac{1}{2} \cdot \frac{$$$

 $f: \Omega \rightarrow D$. s.t. $f(Z_0)=0$, and $f'(Z_0) > 0$. Ω [C] ~) ₹₀ (follow Stein). Pf: Let F be the family of holomorphic maps f: D > C such that Of is injective. . O f(s) C D

<u>Step (1)</u>: Show that F is non-empty. By assumption, JAEC, a& D. Easy case, if exists open nord U of a, such that UCS2, Then consider automorphism of Ĉ; Ē: Z ~ Z-a. this will send $a \mapsto \infty$, $\Omega_1 = \overline{\Phi}(\Omega) \subset \mathbb{C}$ still simply connected. and SLI is bounded, let ZI= E(ZD). Then we consider the map $\Psi: \mathbb{C} \to \mathbb{C}$, $Z \mapsto \frac{1}{R}(Z-Z_i)$. for some large enough \mathbb{R} . this will send Ω_1 to $\Omega_2 \subset \mathbb{D}$ and Z_1 to O. The composition ₽• E satisfies. condition of F.

30 Ю shift + shrink

Z Kon I is unbounded. I is hounded General case: Let a E D. Consider the function. $g(Z) = \int Z \frac{1}{w - a} dw^{-}, \text{ where integration is along}$ $Z_{D} \frac{1}{and w - a} \neq 0 \quad \forall w \in \Omega}{and w - a} \quad \forall w \in \Omega$ Since SL is simply connected, the integral is well-defined. Then $g'(z) = \frac{1}{z-a}$, $g(z_0) = 0$. $\Rightarrow \left| g(z) = \log \left(\frac{z-a}{z_0-a} \right) \right|$ with the branch of the logarithm suitably chosen. s.t. g(Zo)=0. Then g: S -> C is injective, since expog: Z -> Z-a is injective. Moreover $g(\Omega) \cap (g(\Omega) + 2\pi i \cdot n) = \phi$ for any n EZLIGO3. Let B = Br(Zo) CS2 be a ball, then. $g(sz) \cap g(B) + z\pi i = \varphi$. Hence, the complement of g(sz)contains an open subset q(B) + 2Ti. We may apply the easy case $\Omega' = g(\Omega)$ and $Z_0' = g(Z_0)$, and get a map $G_1: \Omega' \rightarrow D$ to with $G(Z_0') = 0$. Then $G \circ g : \mathcal{D} \to \mathbb{D}$, $Z_0 \mapsto 0$ satisfies the condition for F. Hence F is non-empty. <u>Step Q</u>: We may assume $\Omega \subset D$ and $Z_0 = 0$, since the general case can be reduced to this case. By Montel's theorem, since F is uniformly bounded on Ω , F is a normal family.

 $\tilde{f}: \Omega \xrightarrow{f} \mathbb{D} \xrightarrow{F_{a}} \mathbb{D} \xrightarrow{\sqrt{z}} \mathbb{D} \xrightarrow{\overline{f}_{a}} \mathbb{D}$

Let $\hat{\Omega} = f(\Omega)$, $\mathcal{U} = F_{\alpha}(\hat{S}^2)$, then $F_{\alpha}(\alpha) = 0$, and $0 \notin \mathcal{U}$. $\begin{array}{c} \widehat{\Omega} \end{array} \xrightarrow{F_{a}} \\ \widehat{\Omega} \end{array} \xrightarrow{\bullet} \\ \end{array} \xrightarrow{\bullet} \\ \end{array} \xrightarrow{\bullet} \\ \end{array} \xrightarrow{J_{\overline{2}}} \\ \xrightarrow{\bullet} \\ \xrightarrow{I_{\overline{2}}} \\ \xrightarrow{I_{\overline{2}} \\ \xrightarrow{I_{\overline{2}}} \\ \xrightarrow{I_{\overline{2}} \\ \xrightarrow{I_{\overline{2}}} \\ \xrightarrow{I_{\overline{2}}} \\ \xrightarrow{I_{\overline{2}}} \\ \xrightarrow{I_{\overline{2}}$ f (d/ well defined Since U is simply connected. since $F_a^2 = id$, thus. $f = F_{\alpha} \circ F_{\alpha} \circ F_{\alpha} \circ f$ $\langle \ominus \rangle$ \overline{D} maps D to D, and is not injective, since z^2 is not. Hence by the last part of Schwarz Lemma,] I'(0) < 1. Thus. $f'(0) = \tilde{f}(0) \cdot \bar{\Psi}(0)$ $|f(\omega)| = |\tilde{f}'(\omega)| \cdot |\bar{\mathfrak{T}}'(\omega)| \cdot \langle \tilde{f}'(\omega)|$ Contradicting with If'(0) is maximum in F. Heme f is surjective. Finally, we may compose f with a rotation to achieve f(0) > 0. To show uniqueness, suffice to note that of f, and fz both satisfy the condition, then $f_{12} = f_2 \circ f_1^- : \mathbb{D} \to \mathbb{D}$ is an automorphism that fixes () and fizer >0, hence $f_{12} = id.$, i.e. $f_1 = f_2$. #