Today:

1. midterm 2
2. Ch 5 of Stein. Jensen.
3. Concepts \& Thy:

- argument principle.
f : meromorphic function on Ω.
r : simple closed curve.

$$
\frac{1}{2 \pi i} \int_{\gamma} \frac{f^{\prime}(z)}{f(z)} d z=\# \text { zero inside } \gamma \quad \text { \# pole inside } \gamma
$$

- (3) If f is a rational function on $\hat{\mathbb{C}}$, then does f has equal number of zero \& pole? (including multiplicity)

Ex

$$
\begin{array}{cc|c}
f(z)=z . & z=0 . & z=\infty \\
f(z)=\frac{1}{z-1} & z=\infty & z=1 . \\
f(z)=\frac{\left(z-a_{1}\right) \cdots\left(z-a_{m}\right)}{\left(z-z_{1}\right) \cdots\left(z-z_{n}\right)} & &
\end{array}
$$

zero	pole.
$z=0$.	$z=\infty$

- if $n=m$. Then ∞ is a regular point.

$$
\begin{aligned}
\lim _{z \rightarrow \infty} f(z) & =\lim _{z \rightarrow \infty} \frac{z^{n}+\cdots}{z^{n}+\cdots}=1 . \\
\text { zeros } & =a_{1}, \cdots, a_{m} \\
\text { poles } & =z_{1}, \cdots, z_{n} .
\end{aligned}
$$

- if $n>m$., then ∞ is a zero. of order $n-m$.

$$
\begin{aligned}
& \text { \# zee }=\# \text { pole }=n . \\
& \because \text { let } w=1 / z . \quad f\left(\frac{1}{w}\right)=\frac{\left(\frac{1}{w}-a_{1}\right) \cdots\left(\frac{1}{w}-a_{m}\right)}{\left(\frac{1}{w}-z_{l}\right) \cdots\left(\frac{1}{w}-z_{n}\right)} \\
&=\frac{w^{n-m}\left(1-a_{1} w\right) \cdots\left(1-a_{m} w\right)}{\left(1-z_{1} w\right) \cdots\left(1-z_{n} w\right)}
\end{aligned}
$$

- Similarly for poles.
$(5): \Omega=\frac{\mathbb{1}}{\tau} \backslash\left\{x+i y \mid y=0\right.$. and $\begin{array}{rr}x \in(-1,-0.5] \cup \\ [0.5,1)\} .\end{array}$
open unit disk

it is simply connected.

2 (1). $f=\frac{(z+1)^{2}}{(z-1)^{3}}$ expand conoid $z=1$,
Let $u=z-1, \quad f=\frac{(u+2)^{2}}{u^{3}}=\frac{u^{2}+4 u+4}{u^{3}}$

$$
=\frac{1}{u}+\frac{4}{u^{2}}+\frac{4}{u^{3}}
$$

Residue at $u=0$ is 1 .
(2). $z^{3}-4 z+1 . \rightarrow$ Roche the \rightarrow

$$
f(z)=-4 z, \quad g(z)=z^{3}+1 .
$$

$|f|>|g|$ on $\{|z|=1\}^{\prime}$, C then f and $f+g$ has same \#of zero in C, which is 1 outside $C . \quad \because$ total \# zero $=3, \quad \therefore$ we have 2 zeros outside C.
(3). $\oint_{\substack{|z|=2}} \frac{1}{z^{5}-1} d z=0$
ccu

$$
z^{5}-1=0 \text { has } 5 \text { distinct }
$$

roots $\quad z_{j}=e^{\frac{2 \pi i}{5} \cdot j} \quad, j=0,1, \cdot \cdots, 4$.
Let $\omega=\frac{1}{z}$, then $\{|z|=2\} \Leftrightarrow\left\{|w|=\frac{1}{2}\right\}$.

$$
\begin{aligned}
& \left(-\oint_{\substack{\left\{|w|=\frac{1}{2}\right\} \\
c c w}}\right) \frac{1}{\left(\frac{1}{2}\right)^{5}-1} d\left(\frac{1}{w}\right) . \\
= & \oint_{|\omega|=\frac{1}{2}} \frac{\omega^{5}}{1-\omega^{5}}\left(-\frac{1}{\omega^{2}}\right) d \omega . \\
= & \oint_{|\omega|=\frac{1}{2}} \frac{\omega^{3}}{1-\omega^{5}} \cdot d \omega . \quad \begin{array}{ll}
z=\infty & \text { inside } \quad|\omega|=\frac{1}{2} .
\end{array} \\
= & 0 .
\end{aligned}
$$

(c.f. HW \#ll. last question).

$$
C=\{|z|=1\} .
$$

(4). $\frac{1}{2 \pi i} \int_{|z|=1} \frac{f^{\prime}(z)}{f(z)} d z=\#-f$ zeno of f inside C

- \# of poles of f inside C.

$$
f=\frac{z^{2}(z+10)^{3}}{(z-10)^{4}} \quad \text { zero: } \quad \begin{aligned}
z & =0 \\
z & =-10
\end{aligned} \quad \text { order } 2
$$

poles : $\quad z=10$. order 4 .
only $z=0$ is the zero inside C.

$$
\text { with } \text { order }=2
$$

\therefore by argant prixciple. we get 2 .

$$
\begin{aligned}
& \frac{f^{\prime}(z)}{f(z)}=(\log f)^{\prime} \\
& \log \left(\frac{z^{2}(z+10)^{3}}{(z-10)^{4}}\right)=2 \log z+3 \log (z+10) \\
& -4 \log (z-10)
\end{aligned}
$$

take derivative

$$
[\log (\cdots)]^{\prime}=\frac{2}{z}+\frac{3}{z+10}-\frac{4}{z-10} .
$$

$$
\frac{1}{2 \pi i \pi} \oint_{\mathbb{R}=1}(-\sqrt{-}) d z \stackrel{C . T . f}{=} 2 .
$$

\#3: (1). $\quad f(z)=\int_{a}^{b} \frac{g(x)}{z-x} d x$.

- $f(z)$ does not have isolated singularity. the entire segment $[a, b]$ is the singular locus.

$$
\begin{aligned}
& \text { - } \frac{1}{2 \pi i} \oint_{\gamma} f(z) d z=\frac{1}{2 \pi i} \int_{z \in \gamma}\left(\int_{x \in[a, b]} \frac{g(x)}{z-x} d x\right) d z \\
& =\int_{x \in[a, b]}\left(\frac{1}{2 \pi i} \int_{\gamma} \frac{g(x)}{z-x} d z\right) d x=\int_{x=a}^{b} g(x) \cdot d x .
\end{aligned}
$$

\because integrand is bounded
integration domain is compact.

approximate

$$
f(z) \approx \sum_{i=1}^{N}\left(\frac{g\left(\frac{x_{i}+x_{i-1}}{2}\right)}{2} \cdot\right)\left(x_{i}-x_{i-1}\right)
$$

$$
\approx \int_{x=a}^{b} \frac{g(x)}{z-x} d x
$$

(2). by same argument $\oint_{\gamma} F(z) d z=0$
(3) How to recover $g(x)$ by $f(z)$.

$$
i f \sqrt{f(z)}=\frac{a_{1}}{z-z_{1}}+\frac{a_{2}}{z-z_{2}}+\frac{a_{3}}{z-z_{3}}
$$

how to extract a_{i} using integration?
$\cdots \cdot z_{2}$
z_{1}

$$
a_{1}=\frac{1}{2 \pi i} \oint_{\left|z-z_{1}\right|=\varepsilon} f(z) \cdot d z
$$

$$
\begin{aligned}
& g(x)=? \frac{1}{2 \pi i} \oint_{|z-x|=\varepsilon} f(z) d z=\int_{x-\varepsilon}^{x+\varepsilon} g\left(x^{\prime}\right) d x \prime \\
& g(x)=\lim _{\varepsilon \rightarrow 0} \frac{1}{2 \varepsilon} \cdot \int_{x-\varepsilon}^{x+\varepsilon} g\left(x^{\prime}\right) d x^{\prime}
\end{aligned}
$$

$$
=\lim _{\varepsilon \rightarrow 0} \frac{1}{2 \varepsilon} \cdot \frac{1}{2 \pi i} \cdot \oint_{|z-x|=\varepsilon \text {. }} f(z) d z
$$

4
(1).

$$
\begin{aligned}
& w=1-a z \\
& |z|<1
\end{aligned}
$$

this $\log \omega$ is well-defines single valued funtion.

$$
f(z)=\log (1-a z), \quad f(0)=\log 1=0 .
$$

(2). $\quad \log (1-a z) . \stackrel{?}{\sim} \quad \log \left|1-a \cdot e^{i \theta}\right|$

$$
\begin{aligned}
& \operatorname{Re}(\log (1-a z))=\log \left|1-a \cdot e^{i \theta}\right| . \\
& \int_{0}^{2 \pi} \cdot \log \left|1-a \cdot e^{i \theta}\right| \cdot d \theta \\
= & \int_{0}^{2 \pi} \operatorname{Re}\left(\log \left(1-a \cdot e^{i \theta}\right)\right) \cdot d \theta \\
= & \operatorname{Re} \int_{0}^{2 \pi} \log \left(1-a \cdot e^{i \theta}\right) \cdot d \theta . \\
\because & \operatorname{lot} z=e^{i \theta} \\
= & \operatorname{Re} \text { is real. } \oint_{|z|=1} \log (1-a z) \cdot \frac{d z}{i z} \\
= & \operatorname{Re} \oint_{|z|} \frac{\log (1-a z)}{i z} d z \\
&
\end{aligned}
$$

$$
\left(\begin{array}{c}
\operatorname{Res}_{z \rightarrow 0} \frac{\log (1-a z)}{z}=0 . \\
\rightarrow=\operatorname{Re}(0)=0 .
\end{array}\right.
$$

Altermatively: $u(z)=\operatorname{Re} \log (1-a z)=\log |(1-a z)|$ is a harmowe function

$$
\begin{aligned}
\therefore u(0) & =\frac{1}{2 \pi} \cdot \int_{0}^{2 \pi} u\left(e^{i \theta}\right) d \theta \\
\therefore 0=\log (1) & =\frac{1}{2 \pi} \int_{0}^{2 \pi} \cdot \log \left|\left(1-a \cdot e^{i \theta}\right)\right| d \theta
\end{aligned}
$$

More about Problam 3.(\#3).

$$
\begin{aligned}
& \oint f(z) d z=\lim _{\delta \rightarrow 0}(\int_{c_{1}} f f(z) d z+\underbrace{f}_{C_{2}} f(z) \cdot d z .) \\
& f(z)=\int_{a}^{b} \frac{g(x)}{z-x} d x=\underbrace{\int_{f_{2}} \frac{g(x)}{z-x} \cdot d x+\int_{x_{2}(z)}^{\int_{x_{0}-r} \frac{g(x)}{z-x} \cdot d x}}_{\substack{x \in[a, b] \\
x \in\left[x_{0}-r, x_{0}+r\right]}} \underbrace{f_{1}(z) .}_{\underbrace{}_{1}}
\end{aligned}
$$

Goal : $\oint f_{2}(z) d z=0=$

$$
\oint_{|z-x|=r}^{|z-x|=r} f_{1}(z) d z=\int_{x_{0}-r}^{x_{0}+r .} g(x) d x
$$

Ch 5 Entire Functions.

- holomorphic. on the entire \mathbb{C}. egg. $\sin (z), e^{z}$,
* if $|f(z)|$ bounded, $\Rightarrow f(z)=$ const \therefore the intersting functions, $\sup _{z \rightarrow \infty}|f(z)|=\infty$.
- Recurring the: engineer some function with desired zero locations.
- if we wont a function with finitely many zeros. z_{1}, \cdots, z_{n}. then polynomid will do:

$$
P(z)=\left(z-z_{1}\right) \cdots\left(z-z_{n}\right) .
$$

- How about functions with ∞ man zeros?
i.e. zero set $=\mathbb{Z}$?
$\sin (\pi \cdot z)$ does the job.
- How about more general case? can I have a function $f(z)$. st.
$f(z)=0$ if only if $z=n^{2}$?
for some $n \in \mathbb{Z}$. $n \neq 0$.
Try: $f(z)=\left(z-1^{2}\right)\left(z-2^{2}\right)\left(z-3^{2}\right) \cdots$
infinitely many factors.

$$
f(0)=1^{2} \cdot\left(-2^{2}\right)\left(-3^{2}\right)\left(-4^{2}\right) \cdots \text { doesrit converge. }
$$

