Today : 1. midbern 2 2. Ch5 of Stein, Jonson, 1. Concepts & Thm: Ω · argument principle. f: meromorphic function on S. r: simple closed curve. $\frac{1}{2\pi i}\int \frac{f(z)}{f(z)} dz = \# zero \quad inside \quad \gamma = \# pde \quad inside \quad \gamma$ · (3) If f is an a rational function on $\hat{\mathbb{C}}$, then does f has equal number of zero & pole? (including multiplicity) $\underline{Ex} \quad f(z) = z \qquad z = 0, \quad z = \infty$ $f(z) = \frac{1}{z-1}$ $z = \infty$ 2=1. $f(z) = \frac{(z-a_1)\cdots(z-a_m)}{(z-z_1)\cdots(z-z_n)}$ · if n=m. then vo is a regular point. $\frac{\lim_{x \to p} f(z) = \lim_{x \to p} \frac{z^n + \cdots}{z^n + \cdots} = 1.$ n=m . zeros = a1, ..., am poles = Z1, ---, Zn.

(2) 2³-42+1. → Rouché Hun → f(z) = -4z, $g(z) = z^3 + 1$. · If >(g) on \$1=13". then f and f+g has same # of zero in C, which is 1 , outside C. ": fotal # zero = 3, :, we have 2 zeros outside C. (3) $\int \frac{1}{z^{5}-1} dz = 0$ 2, ₽, • • 2p 121-2. CCW ♪ ₹₅ $Z^{S}-1 = 0 \quad has \quad 5 \quad distinct$ Foots $Z_{j} = e^{\frac{2\pi i}{5} \cdot j} \quad j = 0, 1, \cdots, 4.$ Z4. let ω = 1/2, then {1+2} ⇔ {1ω1-2}. $\left(-\frac{1}{\sqrt{2}}\right)\frac{1}{\left(\frac{1}{\sqrt{2}}\right)^{5}-1}$ $d\left(\frac{1}{W}\right)$. {|w|=+1 $= - \oint_{|w|=\frac{1}{2}} \frac{w^5}{1-w^5} \left(-\frac{1}{w^2}\right) dw.$ $= \oint \frac{\omega^3}{1-\omega^5} \cdot d\omega,$ kog no poles inside [w]=± (w=+ 7=10 x = poles. = (). (C.J. HW #6. Last question). 2=0

C= {121=13 (4). $\frac{1}{2\pi i} \int_{|z|=1} \frac{f'(z)}{f(z)} dz = \# -f zero -f f inside C$ - # of poles of f inside ($f: \frac{z^2(z+10)^3}{(z-10)^4}$ Zero: Z=O order Z $z = -(o \quad order 3$ poles: Z= (0. order 24. only 2=0 is the zero inside C. with order = 2. i' by argument principle, we get 2. $\frac{f'(z)}{f(z)} = \left(\log f\right)'$ $\log\left(\frac{Z^{2}(Z+10)^{5}}{(Z-10)^{4}}\right) = 2\log Z + 3\log (Z+10)$ - 4 log (2-10) take dematrie $\begin{bmatrix} \log \left(- - - \right) \end{bmatrix}' = \frac{2}{2} + \frac{3}{2 + 10} - \frac{4}{2 - 10}$

 $\approx \int \frac{g(x)}{z-x} dx$ (2). by same argument $\oint F(z) dz = 0$ (3) How to recover J(x) by f(z). how to extract ai using integration ? · Z2 E " Z3. $a_{1} = \frac{1}{2\pi i} \oint f(z) \cdot dz.$ |Z-Z1/= 2 radius E. x 8 Ь a g(x) = ? $\frac{1}{2\pi i} \oint f(z) dz = \int_{x-z}^{x+z} g(x') dx!.$ [Z-X]=E $g(x) = \lim_{x \to \infty} \frac{1}{2\varepsilon} \int_{x-\varepsilon}^{x+\varepsilon} g(x') dx'$

$$= \lim_{s \to 0} \frac{1}{2Z} \cdot \frac{1}{2\pi i} \cdot \oint_{z=2}^{\infty} \int_{z=2}^{\infty} \int_{z=2}^{\infty} \int_{z=2}^{\infty} \int_{z=2}^{z} \int_{z$$

$$\frac{\operatorname{Res} \frac{|v_{\mathcal{I}}(1-a_{\mathcal{E}})}{\mathcal{Z}=o} = 0.$$

$$\Rightarrow = \operatorname{Re} (o) = 0.$$

Alternatively:
$$\mathcal{U}(z) = \operatorname{Re} \log (1 - \alpha z) = \log |(1 - \alpha z)|$$

is a 2 harmonic function
 \mathcal{U} by Mean Value
 $\mathcal{U}(z) = \frac{1}{2\pi} \cdot \int_{0}^{2\pi} \mathcal{U}(e^{i\theta}) d\theta$
 $\mathcal{U}(z) = \frac{1}{2\pi} \int_{0}^{2\pi} \mathcal{U}(e^{i\theta}) d\theta$

_

|Z-x|=r χtr. $\oint f_1(z) dz = \int g(x) dx$ 12-21=8 Ch5 Entire Functions. · holomorphic. on the entire C. r_{2} , Sir(Z), e^{Z} * if |f(z)| bounded, $\Rightarrow f(z) = const$ i the intersting functions, sup (f(z)) = in. z->p · Recurring thm: engineer some function with desired Zevo locations. " if we want a function with finitely many zeros. Zi,--, Zu, they polynomial total will do: $P(z) = (z - z_1) - (z - z_n)$. How about functions with the many zeros?

i.e. zero set = Z? $\sin(\pi \cdot z)$ does the job. · How about more general case? can I have a function f(3), st. f(z) = 0 if only if $z = n^2$? for some nEX., n=0. • Try : $f(z) = (z - 1^2)(z - 2^2)(z - 3^2) \dots$ infinitely many factors. $f(0) = 1^{2} \cdot (-2^{2}) \cdot (-3^{2}) \cdot (-4^{2}) - \cdots = 0$ doesn't converge.