Today: Follow Ahlfors. Ch 5.

- Conformal mapping : after thanksgiving.

ChS: Infinite product and infinite series.
S1: Taylor series. Laurent series.
(Recall Chm 1 : Suppose $f_{n}: \Omega_{n} \rightarrow \mathbb{C}$ hol'c function on Thin Stein) open sets Ω_{n}. suppose. $\Omega=\lim _{n} \sup \Omega_{n}$, i.e. any point in Ω is contain in Ω_{n} for sufficiently large n. Suppose $f_{n} \rightarrow f$ uniformly on compact subsets of Ω_{1}, then f is hol'c in Ω.

Ex: $\quad f_{n}=\frac{z}{1+2 z^{n}}, \quad \Omega_{n}=\left\{|z|<2^{-\frac{1}{n}}\right\}$.

$$
\begin{array}{lrl}
& \Omega=\{|z|<1\} . \\
\lim _{n \rightarrow \infty} f_{n}(z)=f(z)=z & & \forall z \in \Omega .
\end{array}
$$

- Taylor Series: (recall).

If $f(z)$ is holic in Ω, if $z_{0} \in \Omega$, then $\exists \operatorname{Dr}\left(z_{0}\right)$, sit. $\overline{\operatorname{Dr}\left(z_{0}\right)} \subset \Omega$, and

$$
f\left(z_{0}+u\right)=f\left(z_{0}\right)+f^{\prime}\left(z_{0}\right) \cdot u+\frac{f^{\prime \prime}\left(z_{0}\right)}{2!} u^{2}+\cdots+\frac{f^{(n)}\left(z_{0}\right)}{n!} u^{n}
$$

$$
+\cdots
$$

if $|u|<r$.

- Laurent Series: (new).

Say $f(z)$ is hol'c in an annulus $\quad R_{1}<|Z|<R_{2}$

then.

$$
\begin{aligned}
& f(z)=\frac{\sum_{n=0}^{\infty} a_{n} z^{n}+\sum_{n=-1}^{-\infty} a_{n} z^{n}}{z \in\left\{R_{1}<|z|<R_{2}\right\} .} \\
& \text { for }
\end{aligned}
$$

Rok: - $f(z)$ doesn't necessarily have isolated singularity. eeg.

$$
f(z)=\int_{-1}^{1} \frac{g(x)}{x-z} d x
$$

$$
g(x):[-1,1] \rightarrow \mathbb{C}
$$

(Smooth.
not isolated singularity

- or. $\quad f(z)=\sqrt{z(z-1)}$

is hol'c in $\{2<|z|<\infty\}$.

Pf: Find a decomposition:

$$
f(z)=f_{1}(z)+f_{2}(z) .
$$

where $f_{1}(z)$ is hol'c in $\left\{|z|<R_{2}\right\}$.
$f_{2}(z)$ is hol'c in $\left\{R_{1}<|z|\right\}$.

$$
\begin{equation*}
\text { eeg. } f(z)=\frac{1}{z+1}+\frac{1}{z+10} \tag{2}
\end{equation*}
$$

hole' in

$$
\{2<|z|<8\}
$$

then lat $f_{1}(z)=\frac{1}{z+10}, \quad f_{2}(z)=\frac{1}{z+1}$.

- Construction: for wry $|z|<R_{2}$, choose r. $|z|<r<R_{2}$.

$$
f_{1}(z)=\frac{1}{2 \pi i} \int_{|z|=r} \frac{f(w)}{w-z} \cdot d w .
$$

this doesint dep on choice of r, as long as $|z|<r<R_{2}$

For $\quad|z|>R_{1}$, lat $\quad|z|>r>R_{1}$,

$$
f_{2}(z)=\frac{-1}{2 \pi i} \int_{|z|} \frac{f(w)}{w-z} \cdot d w .
$$

Check: - $f_{1}(z)$ thus defined is hol'c for $|z|<R_{2}$

- $f_{2}(z)$
hol'c for $|z|>R_{1}$.
- for $R_{1}<|z|<R_{2}$,

$$
\text { - } f_{1}(z)+f_{2}(z)=f(z) .
$$

find r_{1}, r_{2}. $\quad R_{1}<r_{1}<|z|<r_{2}<R_{2}$.

$$
\begin{aligned}
f(z) & =\frac{1}{2 \pi i} \int_{c_{1}+c_{2}} \frac{f(w)}{w-z} \cdot d w . \\
& =\frac{1}{2 \pi i} \int_{c_{1}} \frac{f(w)}{w-z} d w+\frac{1}{2 \pi i} \int_{c_{2}} \frac{f(w)}{w-z} d w \\
& =f_{1}(z)+f_{2}(z) .
\end{aligned}
$$

Use Taylor expansion.

$$
f_{1}(z)=\sum_{n=0}^{\infty} a_{n} z^{n} \quad \text {. valid for } \quad|z|<R_{2} \text {. }
$$

let $w=\frac{1}{z} . \quad g(w)=f_{2}\left(\frac{1}{w}\right), \quad|z|>R_{1} \Leftrightarrow|w|<\frac{1}{R_{1}}$
$g(\omega)$ is hole in $0<|\omega|<\frac{1}{R_{1}}$,

$$
f_{2}(z) \rightarrow 0 \text {, as } z \rightarrow \infty . \quad \therefore \quad g(\omega) \rightarrow 0 \text {, as } w \rightarrow 0 \text {. }
$$

thus $\omega=0$ is a removable singularity. $\therefore g(\omega)$ hols f_{m} $|\omega|<\frac{1}{k}$,

$$
\begin{aligned}
g(w) & =\sum_{n=1}^{\infty} b_{n} \cdot w^{n} \quad \text { valid } \quad \text { for }|\omega|<\frac{1}{R_{1}} \\
\Rightarrow \quad f_{2}(z) & =\sum_{n=1}^{\infty} b_{n} z^{-n} \quad \text { for any } \quad|z|>R_{1} . \\
f(z) & =\sum_{n=0}^{\infty} a_{n} \cdot z^{n}+\sum_{n=1}^{\infty} b_{n} \cdot z^{-n} . \quad R_{1} \cdot|z|<R_{2}
\end{aligned}
$$

Laurent expansion centered at $z=0$.
Ex: $f(z)=e^{\frac{1}{z}}$. hol'c for $0<|z|<\infty$.

$$
f(z)=1+\frac{1}{z}+\frac{1}{2!} \frac{1}{z^{2}}+\frac{1}{3!} \frac{1}{z^{3}}+\cdots
$$

- Laurent expansion of $\sin \left(\frac{1}{z-1}\right)$
around to.
let $u=z-1$, then let $g(u)=f(1+u)$.

$$
g(u)=\sin \left(\frac{1}{u}\right)=\frac{1}{n}+\frac{-1}{3!}\left(\frac{1}{u}\right)^{3}+\cdots \cdot
$$

$$
\binom{\text { plugin Taylor expansion of } \sin x}{\text { replace } x \text { by } \frac{1}{u .}}
$$

\$2. Partial Fractions and Factorization.
By:
Consider $\quad f(z)=\frac{(z+1)(z+2)}{(z-2)(z-3)}$. a meromuphic
function on \mathbb{C}.

- partial fraction presentation:

$$
\begin{aligned}
& \text { rial fraction presentation: } \lim _{z \rightarrow 2}(z-2) \cdot f(z)=\frac{(2+1)(2+2)}{(2-3)} \\
& f(z)=\frac{\left(\lim _{z \rightarrow \infty} f(z)\right.}{z-2}+\frac{(\cdots)}{z-3}+(\cdots)
\end{aligned}
$$

- factorization presentation.

$$
f(z)=\frac{(z+1)(z+2)}{(z-2)(z-3)} \quad \text { specify the zero }
$$

Mittag-Leffler problem (for \mathbb{C}). (pole location)
Q: Given a sequence of points a_{1}, a_{2}, \ldots. such that $\left|a_{i}\right| \rightarrow \infty$ as $i \rightarrow \infty$; given polynomials. $P_{n}(z)$. $n=1,2, \cdots$, can one find a meromplac function $f(z)$ on \mathbb{C}, sit.
$\forall n, \quad \exists D_{\varepsilon}\left(a_{n}\right), \quad \forall z \in D_{\varepsilon}\left(a_{n}\right)$.

$$
f(z)=P_{n}\left(\frac{1}{z-a_{n}}\right)+\text { regular part. }
$$

Ex: $\quad a_{n}=n . \quad P_{n}(z)=z$.
we want a $f(z)$ have poles at $z=n, \quad n=1,2, \cdots$ locally near $z=n, \quad f(z)=\frac{1}{z-n}+($ regular $)$
Try:

$$
f(z)=\frac{1}{z-1}!+\frac{1}{z-2}+\frac{1}{z-3}+\cdots \cdots
$$

Does it make sense?
No. e.g. $f(0)=\frac{1}{-1}+\frac{1}{-2}+\frac{1}{-3}$ o. divergent.
for any z. it is divergent.
(\because for n large $\frac{1}{z-n} \approx \frac{1}{-n}$.).

$$
f_{N}(z)=\sum_{n=1}^{N} \frac{1}{z-n}
$$

for any N finite. $f_{N}(z)$ behaves nicely., have designed poles and singular terms near the poles.

Approach: $\quad f(z)=\sum_{n=1}^{\infty}\left(P_{n}\left(\frac{1}{z-a_{n}}\right),=q_{n}(z)\right)$
For simplicity, assume $a_{n} \neq 0$. then.
we can let $q_{n}(z)$ be the first fewterms" of the Taylor expansion of $P_{n}\left(\frac{1}{z-a_{n}}\right)$ at $z=0$.
$q_{n}(z)=$ sum of first M_{n} terms

$$
\text { in } P_{n}\left(\frac{1}{z-a_{n}}\right)
$$

By choosing M_{n} large enough, we can make.

$$
\begin{aligned}
& P_{n}\left(\frac{1}{z-a_{n}}\right)-q_{n}(z) . \quad \text { small inside } D_{\frac{1}{2}\left|n_{n}\right|}(0) \\
& \Gamma \quad \frac{1}{z-1}=-\frac{1}{1-z}=-\left(1+z+z^{2}+z^{3}+\cdots\right) . \text { for }|z| c \mid .
\end{aligned}
$$

for example.

$$
q(z)=-\left(1+z+z^{2}+z^{3}\right) .
$$

$$
\frac{1}{z-1}-\frac{q(z)}{x^{n}}=-\left(z^{4}+z^{5}+\cdots \cdot\right) .
$$

the higher power x^{n} has the smaller $\left|x^{n}\right|$ is near $x=0$.

We can choose M_{n} to be large enouch, such that

$$
|\underbrace{P_{n}\left(\frac{1}{z-a_{n}}\right)}-\underline{q_{n}(z)}|<\frac{1}{n^{2}} \quad \forall|z| \leqslant \frac{1}{2}\left|a_{n}\right| .
$$

Finally, check for any $z \in \mathbb{C}$.

$$
z \notin\left\{a_{1}, a_{2}, \cdots\right\}
$$

$f(z)$ is finite. We consider those a_{n}. sit. $\left|a_{n}\right|>2|z|$., there is only finitely many a_{n}, with $\left|a_{n}\right|<|z|$.

$$
\begin{aligned}
& \left|\sum_{\substack{\left.n=1,2, \cdots \\
\left|a_{n}\right|>2 \mid z\right]}} P_{n}\left(\frac{1}{z-a_{n}}\right)-q_{n}(z)\right| \\
\leqslant & \sum_{\substack{n=1,2, \cdots \\
\left|a_{n}\right|>2|z|}}\left|P_{n}\left(\frac{1}{z-a_{n}}\right)-q_{n}(z)\right| \\
\leqslant & \sum_{\substack{n=1,2_{1}, \cdots \\
\left|a_{n}\right|>2|z|}} \frac{1}{n^{2}} \leqslant \sum_{n=1}^{\infty} \frac{1}{n^{2}}<\infty .
\end{aligned}
$$

$$
\begin{aligned}
f(z) & =\sum_{\left|a_{n}\right| \leqslant 2|z|}\left(P_{n}\left(\frac{1}{z-a_{n}}\right)-q_{n}(z)\right)^{d} \begin{array}{c}
\text { Jinirely } \\
\text { many terms }
\end{array} \\
& +\sum_{\left|a_{n}\right|>2|z|}\left(P_{n}\left(\frac{1}{z-a_{n}}\right)-q_{n}(z)\right) .
\end{aligned}
$$

Back to the example. Need to find $q_{n}(z)$, sit.

$$
\left|\frac{1}{z-n}-\underline{q_{n}(z)}\right|<\frac{1}{n^{2}} \quad \text { for } \quad|z|<\frac{n}{2}
$$

$|z|<n$.

$$
\begin{aligned}
\frac{1}{z-n} & =-\frac{1}{n} \frac{1}{1-\frac{z}{n}} \\
& =-\frac{1}{n}(\underbrace{\left.1+\frac{z}{n}+\left(\frac{z}{n}\right)^{2}+\cdots \cdot \cdots\right) \cdots}
\end{aligned}
$$

$\because\left|\frac{z}{n}\right|<\frac{1}{2}$, need M_{n}. sit. $\frac{1}{n}\left(\frac{1}{2}\right)^{M_{n}}<\frac{1}{\underline{2 n^{2}}}$

$$
T \frac{1}{z-10}
$$

