Recall (ast time:
Want build an meromorphic function
$$f(z)$$
, such
that $f(z)$ has poles at $a_1, a_2, \dots, |a_n| \rightarrow \infty$
and near each pole, we want

$$f(z) = P_n\left(\frac{1}{z \cdot a_n}\right) + regular part. \quad z \sim a_n.$$

$$\uparrow P_n(\cdot \cdot) \quad polynomial., \ deg \neq 1.$$

$$\frac{\text{Construction}}{f(z)} = \sum_{n=1}^{\infty} \left(P_n \left(\frac{1}{z - a_n} \right) - \mathcal{G}_n(z) \right)$$

$$Q_n(z)$$
 is the first few terms of the Taylor expansion
of $P_n(\frac{1}{z-a_n})$ near $Z=0$.

Intuition: by adding this correction term
$$-q_n(z)$$
,
we minimize the "pollution" to the "constructed region",
1.e. $\{|Z| < R\}$.

$$\frac{\pi^2}{\sin^2 \pi^2}, \quad \text{it has pole at } Z \in \mathbb{Z}.$$

$$\operatorname{near} Z = n, \qquad \frac{\pi^2}{\sin^2 \pi^2} = \frac{1}{(2-n)^2} + \operatorname{reg. part.}$$

$$\frac{\pi^{2}}{\sin^{2}\pi^{2}} = \frac{+\infty}{n^{2}-v^{2}} \frac{1}{(z-n)^{2}} + g(z)$$

$$T \quad \text{extire function.}$$

$$\frac{1}{|z-n|^{2}} = \frac{1}{|z-n|^{2}} + g(z)$$

$$\frac{1}{|z-n|^{2}} = \frac{1}{|z-n|^{2}} + \frac{1}{|z-n|^{2}} +$$

$$\Rightarrow g(z) \rightarrow 0 \quad uniformly in x, as $|y| \rightarrow 0$.$$

Prop :

$$\frac{\pi^2}{\sin^2 \pi z} = \sum_{n \in \mathbb{Z}_n} \frac{1}{(z - n)^2}$$

Read in Ahlfors P190. about expansion of $\pi \cdot \cot(\pi z) = \pi \cdot \frac{\cos(\pi z)}{\sin(\pi z)}$. $\frac{\pi}{\sin(\pi z)}$.

Infinite Product. • Let $b_1, b_2, b_3 - \cdots$ be non-zero complex numbers. we say $\begin{array}{c} \infty \\ \prod_{i=1}^{\infty} b_i \end{array}$

$$TT_{N} = TT_{i=1}^{N} b_{i}, \quad \text{convergent} \quad \text{as a sequence.}$$

Then we say, the infinite product is.
$$TT = \lim_{N \to \infty} TT_{N}.$$

· We are interested in the case, where TT exists. and is non.zero.

Consider the case
$$b_{i} = 1 + a_{i}$$
, and $a_{i} \rightarrow 0$.
Lemma: T bi exist and is non zero.
if. $\sum_{r=1}^{\infty} |a_{i}| < \infty$.

• Consider an entire function $f(\overline{z})$. (on C.). with m-order of zero at $\overline{z}=0$, and others roots. at a_1, a_2, a_3, \cdots (possibily with repetitions). $|a_i| \rightarrow \infty$ as $i \rightarrow \infty$.

Naive guess:
$$f(z)$$
 can be written as.
 $f(z) := Z^m \cdot \prod_{i=1}^{\infty} \left(1 - \frac{z}{a_i} \right) \cdot \underbrace{e}_{q(z)}^{q(z)}$
 $a \cdot non \cdot vanishing$
 $a \cdot non \cdot vanishing$
 $entive function.$
since in this case. $\prod_{i=1}^{\infty} \left(1 - \frac{z}{a_i} \right) \operatorname{converge}$.

• Cure: need to change the naive factor

$$\left(1-\frac{z}{a}\right)$$
 to a "canonical factor"
 $E_{k}(z;a) = \left(1-\frac{z}{a}\right) \cdot e^{\frac{z}{a} + \frac{1}{2}\left(\frac{z}{a}\right)^{2} + \cdots + \frac{1}{k}\left(\frac{z}{a}\right)^{k}}$

If
$$\left|\frac{z}{a}\right| < 1$$
. then we have.

$$\mathcal{L} \text{ working over the principal branch, of (eq.} \\ \log E_{K}(2 > \alpha) = \underbrace{\log \left(1 - \frac{2}{\alpha}\right)}_{\text{log}} + \underbrace{\frac{2}{\alpha} + \frac{1}{2} \left(\frac{2}{\alpha}\right)^{2} + \dots + \frac{1}{k} \left(\frac{2k}{k}\right)}_{\text{log}} \\ \text{the first few}_{\text{terms of Taylor}} \\ \frac{1}{1 - \alpha} = 1 + \alpha + \alpha^{2} + \dots \\ \left(\begin{array}{c} 1 - \alpha \\ 1 - \alpha \end{array} \right) + \frac{1}{\alpha} + \alpha^{2} + \dots \\ \frac{1}{1 - \alpha} = 1 + \alpha + \alpha^{2} + \dots \\ \frac{1}{1$$

$$\int -\log(1-\alpha) = \alpha + \frac{\alpha^2}{2} + \frac{\alpha^3}{3} + \cdots$$
If we replace $(1-\frac{2}{an})$ by
 $E_{kn}(2, \alpha n)$, and choose kn large
enough for each n , then $\forall R > 0$,
 $\prod_{n=1}^{\sqrt{0}} E_{kn}(2, \alpha n)$ is uniformly convergent
 $n=1$
on this closed $\frac{1}{2} \frac{1}{2} \frac{1}{2} R^2$. (equivalently, for
any compact subset
 $K < C$)
(Read proof in Ahlfors \$Ch S. \$2.2).

(Ahlfors) Ors. 5.3 Jensen's Formula.

> • Recall, if f(z) is holic in Ω , $\Omega \supset \overline{D}$. then • $f(v) = \frac{1}{2\pi} \int_{v}^{2\pi} f(e^{i\theta}) d\theta$. • $u(z) = \operatorname{Re}(f(z))$. u(z). harmonsc.

 $\mathcal{U}(0) = \frac{1}{2\pi} \int_{0}^{2\pi} \mathcal{U}(e^{i\theta}) d\theta.$

• If
$$f(\vec{z})$$
 is holic and non-vanishing on $\overline{\mathbb{D}}$.
then $\log |f(\vec{z})|$ is a well-defined.
(harmonic function.
(harmonic , :: Re $\log (f(\vec{z})) = \log |f(\vec{z})|$.
 $(harmonic , :: Re \cdot \log (f(\vec{z})) = \log |f(\vec{z})|$.
 $(harmonic , :: Re \cdot \log (f(\vec{z})) = \log |f(\vec{z})|$.
 $(harmonic , :: Re \cdot \log (f(\vec{z})) = \log |f(\vec{z})|$.
 $(harmonic , :: Re \cdot \log (f(\vec{z})) = \log |f(\vec{z})|$.
 $(harmonic , :: Re \cdot \log (f(\vec{z})) = \log |f(\vec{z})|$.
 $(harmonic , :: Re \cdot \log (f(\vec{z})) = \log |f(\vec{z})|$.
 $(harmonic , :: Re \cdot \log (f(\vec{z})) = \log |f(\vec{z})|$.
 $(harmonic , :: Re \cdot \log (f(\vec{z})) + d\theta \cdot (\mathbf{x})$.
 $(harmonic , :: F(\vec{z}) = 2\pi \cdot \int_{0}^{2\pi} \log |f(\vec{z})| + d\theta$.
 $f(\vec{z}) = F(\vec{z}) \cdot (\vec{z} \cdot \vec{z}_0)$.
 $f(\vec{z}) = F(\vec{z}) \cdot (\vec{z} \cdot \vec{z}_0)$.
 $f(\vec{z}) = \frac{1}{2\pi} \cdot \int_{0}^{2\pi} |s_1| + (e^{i\theta})| \cdot d\theta$.
 $\log |F(\sigma)| = \frac{1}{2\pi} \cdot \int_{0}^{2\pi} |s_2| + (e^{i\theta})| \cdot d\theta$.
 $\log |\frac{f(e^{i\theta})}{e^{i\theta} \cdot \vec{z}_0}| = \log |f(e^{i\theta})| - \log |e^{i\theta} \cdot \vec{z}_0|$
 $(laim : \int_{0}^{2\pi} \log |e^{i\theta} - \vec{z}_0| \cdot d\theta = 0$.
 $\therefore \vec{z}_0 = e^{i\varphi}$.
 $\int_{0}^{2\pi} \log |e^{i\theta} - \vec{z}_0| \cdot d\theta = 0$.
 $\therefore \vec{z}_0 = e^{i\varphi}$.
 $\int_{0}^{2\pi} \log |F(e^{i\theta})| \cdot d\theta = \int_{0}^{2\pi} \log |f(e^{i\theta})| d\theta$.

: If
$$f(z)$$
 has zeros on the boundary ∂D .
then.
 $\log |f(o)| = \frac{1}{2\pi} \int_{0}^{2\pi} \log |f(e^{i\theta})| \cdot d\theta$. $(\frac{same}{*})$

"What if
$$f(\vec{z})$$
 has zeros a_{1}, \dots, a_{n} inside D ?
then
 $(\text{Jensen}) \log |f(\vec{z})| = \sum_{i=1}^{n} \log |a_{i}| + \frac{1}{2\pi} \int_{0}^{2\pi} \log |f(e^{i\theta})| d\theta$.
 $extra factors$.

$$\frac{\int (z) = F(z) (z-a_{1}) \cdots (z-a_{n})}{\int z = 1 + f(z)} \quad \text{is non-vanishing for } z \in \overline{D}.$$
By (*): $\log |F(z)| = \frac{1}{2\pi} \int_{0}^{2\pi} |\log|F(e^{i\theta})| \cdot d\theta.$

$$\frac{1}{2\pi} \int_{0}^{2\pi} |\log|F(e^{i\theta})| - \sum_{i=1}^{n} \log|e^{i\theta} - a_{i}| \right) d\theta.$$

$$= \frac{1}{2\pi} \int_{0}^{2\pi} (\log |e^{i\theta} - a_{i}| \cdot d\theta.$$

$$= \frac{1}{2\pi} \int_{0}^{2\pi} \log |e^{i\theta} - a_{i}| \cdot d\theta.$$

$$= \frac{1}{2\pi} \int_{0}^{2\pi} \log |e^{i\theta} - a_{i}| \cdot d\theta.$$

$$= \frac{1}{2\pi} \int_{0}^{2\pi} \log |e^{i\theta} - a_{i}| \cdot d\theta.$$

$$= \frac{1}{2\pi} \int_{0}^{2\pi} \log |e^{i\theta} - a_{i}| \cdot d\theta.$$

$$= \frac{1}{2\pi} \int_{0}^{2\pi} \log |e^{i\theta} - a_{i}| \cdot d\theta.$$

$$= \frac{1}{2\pi} \int_{0}^{2\pi} \log |e^{i\theta} - a_{i}| \cdot d\theta.$$

$$= \frac{1}{2\pi} \int_{0}^{2\pi} \log |e^{i\theta} - a_{i}| \cdot d\theta.$$

$$= \frac{1}{2\pi} \int_{0}^{2\pi} \log |e^{i\theta} - a_{i}| \cdot d\theta.$$

$$= \frac{1}{2\pi} \int_{0}^{2\pi} \log |e^{i\theta} - a_{i}| \cdot d\theta.$$

$$= \frac{1}{2\pi} \int_{0}^{2\pi} \log |e^{i\theta} - a_{i}| \cdot d\theta.$$

$$= \frac{1}{2\pi} \int_{0}^{2\pi} \log |e^{i\theta} - a_{i}| \cdot d\theta.$$

$$= \frac{1}{2\pi} \int_{0}^{2\pi} \log |e^{i\theta} - a_{i}| \cdot d\theta.$$

$$= \frac{1}{2\pi} \int_{0}^{2\pi} \log |e^{i\theta} - a_{i}| \cdot d\theta.$$

$$= \frac{1}{2\pi} \int_{0}^{2\pi} \log |e^{i\theta} - a_{i}| \cdot d\theta.$$

$$= \frac{1}{2\pi} \int_{0}^{2\pi} \log |e^{i\theta} - a_{i}| \cdot d\theta.$$

$$= \frac{1}{2\pi} \int_{0}^{2\pi} \log |e^{i\theta} - a_{i}| \cdot d\theta.$$

$$= \frac{1}{2\pi} \int_{0}^{2\pi} \log |e^{i\theta} - a_{i}| \cdot d\theta.$$

$$= \frac{1}{2\pi} \int_{0}^{2\pi} \log |e^{i\theta} - a_{i}| \cdot d\theta.$$

$$= \frac{1}{2\pi} \int_{0}^{2\pi} \log |e^{i\theta} - a_{i}| \cdot d\theta.$$

$$= \frac{1}{2\pi} \int_{0}^{2\pi} \log |e^{i\theta} - a_{i}| \cdot d\theta.$$

$$= \frac{1}{2\pi} \int_{0}^{2\pi} \log |e^{i\theta} - a_{i}| \cdot d\theta.$$

$$|\log |f(o)| = \sum_{i=1}^{n} \log |a_i| + \frac{1}{2\pi} \cdot \int_{0}^{2\pi} \cdot \log |f(e^{i\Theta})| d\Theta$$