Today: Ahlfors $\operatorname{ch} 5 . \quad$ 53, 55.
§3. Jensen formula:
, Say f is holic on $\overline{D_{\rho}(0)}$, and assume $f(0) \neq 0$. and $a_{1}, a_{2}, \cdots, a_{n} \in \mathbb{D}_{p}(0)$ are the zeros of f. (repeated)

$$
\log |f(0)|=-\sum_{i=1}^{n} \log \left|\frac{p}{a_{i}}\right|+\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|f\left(p e^{i \theta}\right)\right| d \theta .
$$

(last time. $\quad P=1 . \quad \log |a|=-\log \left|\frac{1}{a}\right|$.)

- Hadamard's The:
- relates the number of zeros with the growth rate of a function.
- Ex: $f(z)=\sin (z)=\frac{e^{i z}-e^{-i z}}{2 i}$
- $f(z)$ has roots at $n \pi$. $n \in \mathbb{Z}$.

$$
|f(z)| \leqslant \frac{\left|e^{i z}\right|+\left|e^{-i z}\right|}{2} \leqslant e^{|z|}
$$

- $\nu(r):=\#$ of roots of $f(z)$ inside $\{|z|<r\}$.

$$
\begin{aligned}
& \text {. } M(r):=\sup _{|z| \leq r}|f(z)|=\sup _{|z|=r}|f(z)| . \\
& \left(\text { then. for } f(z)=\sin (z) . \quad M(r) \leq e^{r^{\prime}} \text { linear in } r .\right.
\end{aligned}
$$

Concepts: - genus h.

- order (of growth).

Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be an eutive function. the genus h of f is the smallest $\frac{\text { nom-nagestin }}{\text { integer, }}$ such that. we have

$$
\begin{aligned}
& \text { that. we have } \\
& f(z)=e^{g(z)} \cdot \prod_{n=1}^{\infty}\left(1-\frac{z}{a_{n}}\right) \cdot e^{\left(\frac{z}{a_{n}}\right)+\frac{1}{2}\left(\frac{z}{a_{n}}\right)^{2}+\cdots+\frac{1}{h}\left(\frac{z}{a_{n}}\right)^{n}}
\end{aligned}
$$

and $g(z)$ is a polynomial of degree $\leq h$.
Ex: $\quad f(z)=e^{z^{2}}, \quad h=2$.

$$
\quad f(z)=\sin (z), \quad h=1
$$

related to HW. \#3. $\prod_{n=1}^{\infty}\left(1-\frac{z}{n}\right) \cdot e^{\frac{z}{n}}$
is convergent.

Def: order λ of a function f.

$$
\lambda=\inf \left\{\lambda^{\prime} \mid \quad M(r) \leqslant e^{r^{\prime}}\right\} . \quad \begin{gathered}
\text { real } \\
\text { number }
\end{gathered}
$$

- Ex: $f(z)=e^{z^{2}} . \quad \lambda=2$.

Thu (Hadanard): If f is an eutive function, then.

$$
h \leq \lambda \leqslant h+1
$$

remark: if λ is not an integers. then h is uniquely determined.

S5. Normal Family.
A family of hal'< functions over an open set Ω., (with some common properties), and we ave looking for limits for a sequence of functions. $\cup^{\mathbb{C}}$ open subset

- Let's consider functions from Ω, valued in a "metric space" S.
- Recall a motor space S : is a set with a distance function : $d(x, y) \in \mathbb{R} \geqslant 0 . \quad x, y \in S$.

$$
d(x, y)=0 \quad \Leftrightarrow \quad x=y
$$

$$
\begin{aligned}
& d(x, y)+d(y, z) \geqslant d(x, z) \\
& d(x, y)=d(y, x) .
\end{aligned}
$$

Ex: E Euclidean metric on \mathbb{R}^{n}

$$
d(x, y)=\sqrt{\left(x_{1}-y_{1}\right)^{2}+\cdots+\left(x_{n}-y_{n}\right)^{2}}, x, y \in \mathbb{R}^{n}
$$

Sphere, $\quad S^{2} \subseteq \mathbb{R}^{3} \quad$ unit sphere
"find a "tight line" $=$ geodesic x and y on - measure its length
here: the geodesic connecting x aud will be a segment of a great circle passing through $x . y$.

- \mathbb{C} has 2 metros. $\mathbb{C} \simeq \mathbb{R}^{2}$, Euclidean metric.
$\mathbb{C} \subset \mathbb{C} \simeq S^{2}$; use the sphere
$\mathbb{R}^{2} \simeq \mathbb{C} \begin{gathered}\text { metric. } \\ \text { space. general. }\end{gathered}$ $\simeq \mathbb{C}$ space. generalize space.
- A function: $f: \Omega \rightarrow(S, d)$ continuous
$\operatorname{Map}(\Omega, S) . \quad$ this is a set.
- can we put a metric on this
set?
Several different ways.

$$
1<p<\infty
$$

- LP. distance.

$$
f, g \in \operatorname{Map}(\Omega, S)
$$

$$
\rho(f, g)=\left|\int_{\underline{\Omega}}[d(f(z), g(z))]^{P} \underline{d V o l(z)}\right|^{\frac{1}{P}}
$$

(measure)
heme

$$
\begin{aligned}
& L^{\infty} \text {. distance. } \quad \text { (sap norm). } \\
& \rho(f, g)=\sup _{z \in \Omega} d(f(z), g(z)) .
\end{aligned}
$$

if we use L^{∞}. distance as metric on $\operatorname{Map}(\Omega, S)$. then $f_{n} \xrightarrow{L^{\infty}} f$ converges, it means $f_{n} \rightarrow f$ uniformly on Ω.

- If we want to describe " $f_{n} \rightarrow f$ on every compact subset $E \subset l_{\text {. }}$ how to construct a metric?
- Construction of such metric in 3 steps:
1). Find an exhausting seq of compact subsets.

$$
E_{1} \subset E_{2} \subset E_{3} \subset \cdots, E_{i} \subset \Omega, \quad \Omega=\bigcup_{i=1}^{\infty} E_{i}
$$

For example, construct E_{k}, s.t.

2). Modify the metric on S. so that S has bounded diameter. $\alpha \mapsto \frac{\alpha}{1+\alpha}$ $\forall x, y \in S$

$$
\delta(x, y)=\frac{d(x, y)}{1+d(x, y)} \leq 1
$$

one can shake. ($S . \delta$) also satisfies the distance function conditions.
3). For any $f, g \in \operatorname{Map}(\Omega, S)$.

$$
\left(\begin{array}{c}
\text { not } \\
\text { distance } \\
\text { functions }
\end{array}\right) \cdot \underline{P_{E_{k}}}(f, g)=\sup _{z \in E_{k}} \delta(f(z), g(z)) \leqslant 1
$$

$$
\begin{aligned}
{[\rho(f, g) \cdot} & =\sum_{k=1}^{\infty} \frac{\rho_{E_{k}}(f, g) \cdot}{} \cdot 2^{-k} \\
& \leqslant \sum_{k=1}^{\infty} \cdot 2^{-k}=1
\end{aligned}
$$

$(\operatorname{Map}(\Omega, S), P)$ is a metric space.
check: ρ is a distance function.
(1) $p(f, g)=0 \Leftrightarrow f=g . \quad$? $\quad \Leftrightarrow$.

$$
\begin{aligned}
\because P(f, g)=0 & \Rightarrow P E_{k}(f, g) \quad \forall k \\
& \Rightarrow f=g \text { on } E_{k} \quad \forall k . \\
& \Rightarrow \because \Omega=\bigcup_{k=1}^{\infty} E_{k}, \quad \therefore \quad f=g \text { on } \Omega .
\end{aligned}
$$

$\left.\begin{array}{ll}\text { (2) } & \rho(f, g)=\rho(g, f) \\ \text { (3) } & \rho(f, g)+\rho(g, h) \geqslant \rho(f, h)\end{array}\right\} \because \rho_{E_{k}}(\cdot, \cdot)$
satisfies these propties.
check: If $\left\{f_{n}\right\}$ is a seq of far in $\operatorname{map}(\Omega, s)$. then $\quad\left(f_{n} \rightarrow f\right.$ w.r.t. the ρ distance.)
$\Leftrightarrow \quad\left(f_{\underline{n}} \rightarrow f \quad\right.$ uniformly for every compact subset $E \subset \Omega$).
Bf: \Rightarrow since $E_{\infty} \subset \Omega, \quad \Omega=\bigcup E_{k}$.

$$
E=\bigcup_{k=1}^{\infty}\left(E \cap E_{k}\right) .
$$

$\because E$ is compact $\therefore \quad E=E \cap E K$ for K large
i.e. $E \subset E_{R}$ for some (Ex :why?). enoch. large enough K.
want show $\quad P_{E}\left(f_{n}, f\right) \rightarrow 0$.
but $E \subset E_{k}, \quad \rho_{E}\left(f_{u}, f\right)<\rho_{E_{k}}\left(f_{n}, f\right)$.

$$
\begin{aligned}
& P\left(f_{n}, f\right)=\frac{1}{2} \rho_{E_{1}}\left(f_{n}, f\right)+\frac{1}{2^{2}} \cdot \rho_{E_{2}}\left(f_{n}, f\right)+. \\
& \cdots+\underbrace{\frac{1}{2^{k}} \rho_{E_{k}}\left(f_{n}, f_{2}\right)}+\cdots \geqslant \frac{1}{2^{k}} \rho_{E_{k}}(\cdots) \\
& \rho_{E_{k}}\left(f_{n}, f_{n}\right) \leqslant 2^{k} \cdot \rho\left(f_{n}, f\right) .
\end{aligned}
$$

but K is fixed., and $\rho\left(f_{n}, f\right) \rightarrow 0$. by asunftin

$$
\therefore \quad \rho_{E}\left(f_{n}, f\right) \leqslant \rho_{E_{k}}\left(f_{n}, f\right) \leqslant 2^{k} \cdot \rho\left(f_{n}, f_{1}\right) \rightarrow 0
$$

\Leftrightarrow we have uniform convergence for every.
Er. We need to show, $\forall \varepsilon, \exists N$, s.t. $\forall a>N$,

$$
P\left(f_{n}, f\right)<\varepsilon
$$

Find k_{0} large enough. sit. $2^{-k_{0}}<\frac{\varepsilon}{2}$.
then

$$
\begin{aligned}
\rho\left(f_{n}, f\right) & \leqslant \sum_{k=1}^{k_{0}} 2^{-k} \cdot \rho_{E_{k}}\left(f_{n}, f\right)+\sum_{k=k_{0}+1}^{\infty} 2^{-k} \\
& \leqslant \sum_{k=1}^{k_{0}} 2^{-k} \cdot \rho_{E_{k}}\left(f_{n}, f\right)+\frac{\varepsilon}{2} .
\end{aligned}
$$

Now, pick N large enough, sit. $\quad \forall 1 \leq k \leq k_{0}$,

$$
\begin{aligned}
\rho_{E_{k}}\left(f_{n}, f\right) & <\frac{\varepsilon}{2}, \quad \forall n>N \\
\text { for } n>N & \leqslant \sum_{k=1}^{k} \cdot 2^{-k} \cdot\left(\frac{\Sigma}{2}\right)+\frac{\varepsilon}{2} . \\
& \leqslant \frac{\varepsilon}{2} \cdot 1+\frac{\Sigma}{2}=\varepsilon .
\end{aligned}
$$

