

2: Harmonic Function on D. recall: \cdot Def : $U : D \rightarrow \mathbb{R}$ $U(X, y)$. $\int_{0}^{2} u + \frac{1}{4} u = 0.$ $u = a x + b y$ $E\times$: $u = a(x^2-y^2) + bxy$
 $u = a - (x^3-3xy^2) + b$ <u>u = a. (x³-3xy²) + b (y²-3x²y</u> · In general, if fi D > C hol'c
then u= Re(f) is harmonic. u= Re(f) is harmonic. $conversely$, if u is harmonic, then \exists $f: \mathbb{D} \rightarrow \mathbb{C}$, $\frac{hd}{ }$ $s.t.$ $\mathbb{Re}(f) = \mathbb{U}$ $f = u + iv$. Utis determined upto a const. Suppose u can be extended continuously to the boundary circle, then it can be recovered from its boundary value · Dirchlet boundary condition for Laplace e quation : $\Delta U = U$ money
Money Santa μ) μ of μ given continuous function on the boundary Ccaaregularity condition

g

can be relaxed)

Explicit formula to gofrom boundary value of ^U to u: Poisson kemel:
P (2, A) $P(Z, \theta)$ Analogy for Tinput index matrix. output Mij, hxn
index boundary value value index \overline{v} boundary value \overline{v} (\overline{v}) \mapsto \overline{z} in the V
interior. V The the 2π of $\frac{u}{2}$ $\frac{u}{2}$ $\frac{u}{2}$ $\frac{u}{3}$ $\frac{$ $U(z) = \overline{x} \cdot \int_{0}^{y} P(z, \theta) \cdot U(\theta) \cdot d\theta$ (w_{i}) $P(z,\theta) = \text{Re}\left(\frac{e^{i\theta}+z}{e^{i\theta}-z}\right)$ (upto sign). (Schwarz thm. Ahlfors, Eh4. section 6) th d' \leq For f, we have open mapping thm. $f: \Omega \rightarrow \mathbb{C}$ by $\downarrow \text{true}$
 $\cdot \text{true}$ $\downarrow \text{true}$ $\downarrow \text{true}$ $\downarrow \text{true}$ $\downarrow \text{true}$ $\downarrow \text{true}$ \Rightarrow $\frac{v}{\text{open}}$. $u = Re(f)$: $D \xrightarrow{\tau} C \xrightarrow{Re} R$ $\downarrow C/\psi$ is $\downarrow C/\psi$ is open open open. $\frac{m}{\sqrt{m}}$ $\frac{m}{\sqrt{m}}$ R then if UCD is open. $f(\mu)$ is openset, then $Re(f(\mu))$ is open. Thus, harmonic functions are open maps \mathbb{R} .
Thus, harmonic functions are open maps \mathbb{R} . . Maximum principle : u has no $^{\backprime}$ 1 E_X : U is linear, U Z X u is quachatic, $u = x^2-y^2$ csc (of max principle) $\vee u$: $D \rightarrow \mathbb{R}$, harmonic, u is continuous D, then is achieve the Sup U(2), on the boundary
D. In general, one can replace 1) by any one can replace 11 by any bounded (simply connected) region. (See Stein for the corollary

of holomorphic function).

⊄

· Relation between Powers Series and Fourner series: first do it for holomorphic function., \cdot holomorphoc function $f: \overline{D} \to \mathbb{C}$ (i.e. f is holomorphoc function $\int f(z) = \sum_{n=0}^{n} a_n \cdot z^n$, $|z| \leq 1$ in particular. if $|z|=1$, $z=e^{i\theta}$. This **to** is $\int (e^{i\theta}) = \sum_{n=0}^{\infty} a_n e^{in\theta}$. the Fourier expansion of $f: S' \rightarrow \mathbb{C}$ 2D. This can be used to go from boundary value to the interior val. $e.g.$ \mapsto we know $f(e^{i\theta}) = 3 \cdot e^{i\theta} + 5 \cdot e^{i2\theta}$ then we know $f(r, e^{i\theta}) = 3 \cdot r \cdot e^{i\theta} + 5 \cdot r^2 \cdot e^{i2\theta}$ $ie. f(z) = 3z + 5z^2.$ **UnzO** e in 0
C "positive frequency" Fourier mode"
C "positive frequency" Fourier mode" $Rey:$ $f(z) + f(z)$ • Now, say $u = 2 \text{Re}(\frac{f}{f})$. $7k(10)$ how to recover U from its boundary value to interior, using Fourier modes of ULO).

 $U(f) = \sum_{n \in \mathbb{Z}} c_n e^{in\theta}$ C_n e C : U(O) is real valued $\mathcal{U}(\theta)$ = $\overline{\mathcal{U}(\theta)}$ $\mathcal{O}(\mathcal{A})$ and $\mathcal{O}(\mathcal{A})$ Σ_n Cn[.] $e^{in\theta}$ = Σ_n Cn. $e^{in\theta}$ = Σ_c C_n^* . $e^{-in\theta}$ = $\sum_{n \in \mathbb{Z}} C^{*}_{-n}$ $e^{in\theta}$ \Rightarrow Cn = C_{-n}^* $sin(\theta) = \frac{e^{i\theta} - e^{-i\theta}}{2i} = \left(\frac{-1}{2i}\right) e^{-i\theta} + 0 + \left(\frac{1}{2i}\right) \cdot e^{i\theta}$ $(e.9)$ complex conjugate of each other. So, we can define $f(z) = \frac{1}{2}C_0 + \sum_{n=1}^{n} C_n z^n$ then $\overline{f(z)} = \frac{1}{2}C_0 + \sum_{n \ge 1} C_n^* \overline{z}^n$ $C_{-\hbar}$ $e^{-in\theta}$ $f(z) + f(z) = C_0 + \sum_{n \ge 1} C_n \cdot e^{in\theta} + \sum_{n \ge 1} C_n$ = $\sum_{n \in \mathbb{Z}} C_n e^{-\text{i} n \theta} = \mathbb{Z}(\theta)$ we can define $u(\vec{z}) = f(z) + \overline{f(z)} = 2 \text{ Re}(f(z))$ \pm Review of Ch3:

· Consequence of Cauchy integral formula. · Regidue thm: $7c$ · residue at a point is the coefficient of $\frac{1}{z-z_0}$ in the Laurent expansion. et Z.,
(say: f has a pole at Zo, then we can unite $f(z) = \frac{h(z)}{(z - z_0)^n}$ his is hol's at zo = $\frac{\sum_{i=0}^{\infty} a_i \cdot (z-z_0)^i}{(z-z_0)^n}$ = $\frac{a_0}{(z-z_0)^n}$ + $\frac{a_1}{(z-z_0)^{n-1}}$ + " $+ \cdots + \frac{(a_{n-1})}{z-z_0} + \cdots$ plugin the Taylor expansion of h. then camel out commun factors · If γ is a simple closed curve f: is meromorphic with finitely many poles insider, then $f(z) dz = 2\pi i \left(\sum_{p: residue} Res_{p} \cdot f(z) \right)$ γ \int in Ahlfors. Winding number + argument principle. $\begin{pmatrix} 2 & x \\ y & y \end{pmatrix}$ $\begin{pmatrix} 2 & x \\ y & y \end{pmatrix}$ $\begin{pmatrix} 2 & x \\ y & y \end{pmatrix}$ $\begin{pmatrix} 2 & x \\ y & y \end{pmatrix}$ Z_{o} x

 $\frac{f'(z)}{f(z)} = \frac{(-1)^{x} + (-1)^{x} + (-1$ hol's $f(z) = z$, $\delta = \int w^2 \, dv \, dz$. \circ In particular, if f is a rational function, then the $(tot\ddot{x})$ $tot\dot{y}$ $tot\ddot{z}$ $tot\ddot{y}$ $tot\ddot{z}$ $tot\ddot{y}$ $\left(\frac{2}{2}-\frac{2}{2}\right)$ $\frac{Rouchef + hm}{inside}$ $\left(\frac{ff}{1}$ $\frac{2}{1}$ $\frac{f}{1}$ \frac inside <u>b</u>
inside b $inf_{x\in\mathbb{R}} |g| < |f|$ on r . 1.e. if we "turn on" the perturbation g, by $f_{\epsilon}(\hat{z}) = f(\hat{z}) + \hat{z}$ $f(\hat{z})$, $\epsilon \in [0,1]$ then the $# of$ Zero remain const wir.t. ϵ Open mapping 2 maximum modulus principle. Review suggest ⁱ practical computation try Schaum's outline

· conceptual reinforcements, try Ahlfors. Ch4. · Alex's sol'm: "project" push the cure to unit circle \rightarrow $\gamma(t) = e^{i\theta(t)}$ $t\in$ [o,1], now θ_s (t) = (1-5) θ (t). SE[0,1] $\underline{G \bullet \bullet} \theta_0(t) = \Theta(t)$ $\theta_1(t) = 0$