Today: Stein Ch 3. Section $3 \& 4$.

- meromorphic function on $\widehat{\mathbb{C}}$ is rational.
$\left\{\begin{array}{l}\text { argument principle. "arg }(z) " \\ \text { Rouché theorem. }\end{array}\right.$
- open mapping. maximum modulus tho.
- A meromophir function f on an open set Ω, is a function that has a sequence of poles in Ω, (possibly infinite), and these poles not have an accumulation point.

$$
\cdot \quad \widehat{\mathbb{C}}=\mathbb{C} \cup\{\infty\} \text {. }
$$

use a new complex coordinate near $z=\infty$, by letting $u=1 / z$.

- f is a meromophic function on $\widehat{\mathbb{C}}$ means.
$\left\{\begin{array}{l}f(z) \text { restricted on } \mathbb{C} \subset \widehat{\mathbb{C}} \text { is a meromorphic } \\ \text { function. } \\ . \tilde{f}(\omega) \text { restricted on } \mathbb{C}_{\omega} \subset \widehat{\mathbb{C}} \text { is a meromorphic }\end{array}\right.$ " $f(z)=f(1 / w)$.

$$
\widehat{\mathbb{C}} \backslash\{w=\infty\} .
$$ function.

Thm: if f is a mevomophic function on $\widehat{\mathbb{C}}$,
then f is a rational function. i.e.
$\Gamma f(z)$ on \mathbb{C} can be written as $\frac{P(z)}{Q(z)}$ for P, Q polynomials

Before we prove tho, some examples.

	zeros	poles.
$f(z)=\frac{1}{z}$	$\{z=\infty\}$	$\{z=0\}$
$\tilde{f}(\omega)=\omega$	$\{w=0\}^{\prime \prime}$	$\{\omega=\infty\}^{\prime \prime}$
$\tilde{f}(\omega)=z(z+1)$	$z=0,-1$.	a pole of order 2 at $\omega=0$ (or. $z=\infty)$
$\frac{1}{\omega}\left(\frac{1}{\omega}+1\right)=\frac{1+w}{\omega^{2}}$		$z=-2$

non-example for meromorphic function over © but not over $\widehat{\mathbb{C}}$
no pole or zero at $z=\infty$
$\because \lim _{z \rightarrow \infty} f(z)=\lim _{z \rightarrow \infty} \frac{1+\frac{1}{z}}{1+\frac{z}{z}}$ $=1$.

$$
\begin{gathered}
\tilde{f}(w)=\frac{1+w}{1+2 w} \\
\tilde{f}(0)=1 .
\end{gathered}
$$

$f(z)=\frac{1}{\sin (z)}$. poles at $z=n \cdot \pi$.

- there poles do not accumulate over \mathbb{C}.

these poles converge to ∞ in $\widehat{\mathbb{C}}$.
hence $f(z)$ is not meromorphic in $\widehat{\mathbb{C}}$.
\mathbb{C}

$$
\tilde{f}(\omega)=\frac{1}{\sin \left(\frac{1}{\omega}\right)}
$$

$\omega=0$ is an essential singularity.

Pf of thu: step 1: f has finitely many poles in $\widehat{\mathbb{C}}$.
step 2: say Z_{1}, \cdots, Z_{n} are the poles, we define $f_{j}(z)$ to the "singular part" of f at z_{j}, then we consider

$$
R(z)=f(z)-\sum_{j=1}^{n} f_{j}(z)
$$

then conclude $R(z)$ is a constant.
(1) Recall, a set is compact if any infinite sequence of points in this set has accumulation point.
Since $\widehat{\mathbb{C}} \simeq S^{2}$ is compact, we cannot have ∞ many poles.
(2) Let's consider fins, the possible poles at $z=\infty$. (or $\omega=0$).

$$
\begin{aligned}
& \tilde{f}(w)=f\left(\frac{1}{w}\right)= \underbrace{\frac{b_{n}}{w^{n}}+\frac{b_{n-1}}{w^{n-1}}+\cdots+\frac{b_{1}}{w^{1}}}_{\tilde{f}^{\text {sing }}(w)}+\tilde{R}_{0}(\omega) \\
& \tilde{f}^{\text {holomorphic }} \\
& \tilde{f}_{w=0}^{\operatorname{sing}}(w) \text { is now a regular function near } w=0 .
\end{aligned}
$$

$\tilde{f}_{\omega=0}^{\operatorname{sing}}$ in z coordinate is

$$
\begin{aligned}
\cdot f_{z=\infty}^{\operatorname{sing}}(z) & =\tilde{f}_{w=0}^{\sin }\left(\frac{1}{z}\right)=\frac{b_{n}}{(1 / z)^{n}}+\cdots+\frac{b_{1}}{(1 / z)} \\
& =b_{n} \cdot z^{n}+b_{n-1} \cdot z^{n-1}+\cdots+b_{1} \cdot z
\end{aligned}
$$

Now for other poles for $z \in \mathbb{C}$. expand near $z=z_{k}$

$$
\begin{aligned}
f(z)= & \underbrace{\frac{(\cdots)}{\left(z-z_{k}\right)^{n_{k}}}+\frac{(\cdots)}{\left(z-z_{k}\right)^{n_{k}-1}}+\cdots+\frac{(\cdots)}{\left(z-z_{k}\right)^{\prime}}}+\widetilde{R}_{k .} \\
& f_{k}(z)=f_{z=z_{k}}^{\operatorname{sing}}(z) .
\end{aligned}
$$

Consider $R(z)=f(z)-f_{-\infty}^{\text {sing }}(z)-f_{z_{1}}^{\text {sing }}(z)-\cdots-f_{z_{k} .}^{\text {sing }}(z)$.
(Claim:) $\quad R(z)$ near $z=\infty$.
$R(z)$ is bounded near each of the poles, hence by Liouville thu, $R(z)=C$, constant.

Then. $f(z)=\left(b_{n} z^{n}+\cdots+b_{1} z^{\prime}\right)+\frac{(\cdots)}{\left(z-z_{1}\right)^{n_{1}}}+\cdots+\frac{(\cdots)}{\left(z-z_{1}\right)^{\prime}}$

$$
+f_{z_{2}}^{\operatorname{sing}}(z)+\cdots+f_{z_{k}}^{\text {sing. }}(z)+C
$$

is a finite sum of rational function, hence by clearing denominator, we can write.

$$
f(z)=\frac{P(z)}{\left(z-z_{1}\right)^{n_{1}}\left(z-z_{2}\right)^{n_{2}} \cdots\left(z-z_{k}\right)^{n_{k}}}
$$

Next, we move to section (4) ,

Argument Principle:

consider $f: \Omega \rightarrow \widehat{\mathbb{C}}$ a meromophic function.

$$
\int_{\gamma} \frac{f^{\prime}(z)}{f(z)} d z
$$

for simplicity, consider γ to be a simply closed curve. (e.g. $\Omega=D_{1+\varepsilon}(0), \quad \gamma=C$ unit circle).

$$
\text { - } \frac{f^{\prime}(z)}{f(z)} d z=\frac{d f(z)}{f(z)}=" d(\log f(z))
$$

we didn't define yet

$$
\log f(z)=\log |f(z)|+i \cdot \arg \cdot f(z)
$$

but argument of a complex number is ill-defined., its value is ambiguous cepto $2 \pi \cdot n$.

However. $d \log f(z)$ is well-defined.

Ex: : if $f(z)=z-a, \quad f^{\prime}(z)=1$., we hare.

$$
\begin{align*}
& \int_{\gamma} \frac{f^{\prime}(z)}{f(z)} d z=2 \pi i \cdot 1 \tag{r}\\
& \quad i f \quad f(z)=5(z-a), \quad f^{\prime}(z)=5 .
\end{align*}
$$

Claim: if $f(z)$ has an order n zero at z_{0}, then near z_{0},

$$
\frac{f^{\prime}(z)}{f(z)}=\frac{n}{z-z_{0}}+\text { regular part. }
$$

$\left(\right.$ ex. $\left.f(z)=z^{n}, \quad \frac{f^{\prime}(z)}{f(z)}=\frac{n \cdot z^{n-1}}{z^{n}}=\frac{n}{z}\right)$
pf: in general,

$$
f(z)=\left(z-z_{0}\right)^{n} \cdot g(z) .
$$

t non-vanishing near Z_{0}.

$$
\begin{aligned}
f^{\prime}(z) & =\left(\left(z-z_{0}\right)^{n}\right)^{\prime} \cdot g(z)+\left(z-z_{0}\right)^{n} \cdot g(z)^{\prime} \\
& =n \cdot\left(z-z_{0}\right)^{n-1} \cdot g(z)+\left(z-z_{0}\right)^{n} \cdot g(z)^{\prime}
\end{aligned}
$$

then $\frac{f^{\prime}(z)}{f(z)}=\frac{n \cdot\left(z-z_{0}\right)^{n-1} \cdot g(z)+\left(z-z_{0}\right)^{n} \cdot g^{\prime}(z)}{(z-z)^{n} \cdot g(z)}$

$$
=\frac{n}{z-z_{0}}+\frac{g^{\prime}(z)}{g(z)}
$$

τ holomorphic near Z_{0}.
claim\#2: if f has a pole of order n at z_{0}, then

$$
\frac{f^{\prime}(z)}{f(z)}=\frac{-n}{z-z_{0}}+(\text { regular. })
$$

「e.j. $f(z)=\frac{1}{z^{2}}, \quad f^{\prime}(z)=\frac{-2}{z^{3}}, \quad \frac{f^{\prime}(z)}{f(z)}=\frac{-2}{z}, \cdots$

Ihm 4.1. Suppose $f: \Omega \rightarrow \widehat{\mathbb{C}}$ is meromophic, suppose
$\gamma \subset \Omega$ is a simple closed curve, interior of γ
is also in Ω., Then
$\frac{1}{2 \pi i} \int_{\gamma} \frac{f^{\prime}(z)}{f(z)} d z=$ (number of zero inside γ)

- (number of poles inside γ).
where the number takes into account multiplicity,

Pf: $\frac{f^{\prime}(z)}{f(z)}$ subtract the singular part of f^{\prime} / f
at zero and poles of $f(z)$, will be a regular function inside γ, hence the integral will he zero.
Hence,

$$
\frac{i}{2 \pi i} \int_{\gamma} \frac{f^{\prime}(z)}{f(z)} d z=\frac{1}{2 \pi i} \int_{\gamma} \int_{\text {contribution of zero of } f(z)} \frac{a_{1}}{z-\alpha_{1}}+\cdots+\frac{a_{n}}{z-\alpha_{n}}+\frac{-b_{1}}{z-\beta_{1}}+\cdots+\frac{-b_{m}}{z-\beta_{m}} \cdot d z .
$$

$f(z)$ has zeros. $\alpha_{1}, \cdots, \alpha_{n}$ inside γ
with order a_{1}, \cdots, a_{n}.
has poles $\beta_{1}, \cdots, \beta_{m}$ insider γ.
with order b_{1}, \cdots, b_{m}.

$$
=a_{1}+\cdots+a_{n}-b_{1}-b_{2}-\cdots-b_{m}
$$

Ex: $\quad f(z)=\frac{z}{(z-1)(z-2)}$

as z traverse γ.
$f(z)$ tranverse a core $f(\gamma)$. in $\hat{\mathbb{C}}$, which wraps around o once.
 and wraps around ∞ twice.
let $w=f(z)$.

$$
\frac{1}{2 \pi i} \int_{f(\gamma)} \frac{d w}{w}=\frac{1}{2 \pi i} \int_{f(\gamma) .} d \log w
$$

$=$ counts the winding number around O

