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Open Mapping Theorem

isacontinuousnapy
Recall if f X Y between two
topological space f is if and only if
for all Uc X open set f U is open

f is an open map if f sends open set
to open set



distinction between f is continuous and f is open
f is continuous f O
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identify the domain of f with the graph of f
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finishing the claim
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if cost D then modulus remains L

phase is rotating as r N
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Laurent expansion of a meromorphic function near

a pole i
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