Recall: argument principle. $=$ "winding number of the image curve $f(r)$ around $0^{"}$
(1)

$$
\frac{1}{2 \pi i} \int_{\gamma} \frac{f^{\prime}(z)}{f(z)} \cdot d z=\# \text { of zero - \# of pole of } f \text {. }
$$

τ simple closed curve

$$
\left(\begin{array}{ll}
x_{0}^{\gamma} & x: \text { pole } \\
0.0
\end{array}\right.
$$

(2) Rouché theorem: comparison of the number of zeros of 2 "nearby" holomorphic functions inside r.

Consider $f(z)=z^{2}+3 z$, inside the unit circle. C How many zeros are there of f inside C ? $f(z)=z(z+3)$, has roots at 0 and -3 .

Consider modification of $f(z)$. " $\left(z+\frac{3}{2}\right)^{2}+t-\left(\frac{3}{2}\right)^{2}$.
EX: $\quad f_{t}(z)=z^{2}+3 z+t . \quad|t|$ is small.
now the roots of $f_{t}(z)$ depends on t. as t increases from 0 to $\left(\frac{3}{2}\right)^{2}$, then past the roots moves as

$$
z_{ \pm}(t)= \pm \sqrt{\left(\frac{3}{2}\right)^{2}-t}-\frac{3}{2} .
$$

If t moves like

then the 2 roots of $f_{t}(z)$ moves like

Take away: if $H \mid$ is small, then
the roots doesn't rove much, and the number of zeros inside C remains unchanged.

Ex2: same f and C as above.

$$
f_{t}(z)=\underbrace{t \cdot z^{10}}_{f(z)}+\underbrace{z^{2}+3 z}
$$

Ht small.
is it still true that for small $|t|$, there is only one root inside C ?

- as soon as $t \neq 0$, the total number of roots of $f_{t}(z)$ is $10=\operatorname{deg}$ of $f_{t}(z)$.

Heuristic $\left|z^{10}\right|$ is small when $|z|<1$. so, the new roots will occur for away.

- $f_{t}(z)$ is a function close to $f(z)$, not everyuhere but at least on any compact subset K, when t is small.

$$
\left\|f_{t}-f\right\|_{K}:=\sup _{z \in K}\left|f_{t}(z)-f(z)\right| \longrightarrow 0
$$

Rouché theorem: Let f and g be hol'c functions on Ω, and let C be a circle (or any simple closed curve) with its interior contained in Ω, $f(z) \neq 0$ for $z \in C$.
If $\quad|f(z)|>|g(z)| \quad \forall z \in C$
then.
\# zero of f inside C

$=$ \#zero of $f+g$ inside C.

Intuition: " ${ }^{\text {(1) }}$. zero of f inside C
$=$ the winding number of $f(C)$ around 0 .

\because there is no zero of f on C
$\therefore \quad f(c)$ does not pass through zero.

$$
\frac{1}{2 \pi i} \oint_{z \in C} \frac{f^{\prime}(z) d z}{f(z)}=\frac{1}{2 \pi i} \int_{w \in f(c)} \frac{d w}{w}
$$

(2) f can be deformed to $f+g$ by

$$
f_{t}(z)=f(z)+t \cdot g(z) . \quad t \in[0,1]
$$

consider how the image curve $f_{t}(C)$ deforms. key point: $f_{t}(C)$ never pass through zero.
as t varies. Hence the winding number doesn't change.
$f_{t}(C)$ newer pass through zero

$$
\begin{aligned}
& \Leftrightarrow \quad \forall t \in[0,1], \quad \forall z \in C, \quad f_{t}(z) \neq 0 . \\
& \Leftrightarrow \quad \forall t, \forall z \in C \quad f(z)+t \cdot g(z) \neq 0 . \\
& \Leftrightarrow \quad \forall t, \forall z \in C \quad|f(z)|>t \cdot|g(z)|
\end{aligned}
$$

$\Leftrightarrow \forall z \in C \quad|f(z)|>|g(z)|$, which is given.

Open Mapping Theorem:

- Recall if $f: X \rightarrow Y$ between two topological space, f is open if and only if for all $u \subset X$ open set. $f(u)$ is open.
f is an open map if f sends open set to open set".
distinction between f is continuous and f is open
- f is continuous:

$\forall V C Y$ open, $f^{-1}(V)$ needs to be open.
The: if $f: \Omega \rightarrow \mathbb{C}$ is a hol'c function, then f is an open map.

Ex: (4) $f: \quad \mathbb{R} \rightarrow \mathbb{R} . \quad f(x)=x^{2}$.

(1) identify the domain of f with the graph of f
(2) then the map f is just the projection of the graph of f to the y-axis.
this is not an open map, because the open interval $f:(-r, r) \longmapsto\left[0, r^{2}\right)$
\uparrow not an open interval
(2). Consider $f: \mathbb{R} \rightarrow \mathbb{R}$. if $f^{\prime}(x)$ is never zero. Chance has constant sign), then f is open. (using implicit function theorem.)

$f: \mathbb{R} \rightarrow \mathbb{R}$,
(3) $f(x)=$ const is not open, the image is a closed pt in \mathbb{R}.

Why complex number saves the day?
Ex: $\quad f(z)=z^{2}$.

if $z_{0} \neq 6, \quad f^{\prime}\left(z_{0}\right)=2 z_{0} \neq 0$. hence a small disc around z_{0} maps to a small open arrunal $f\left(z_{0}\right)$.

$$
f^{\prime}\left(z_{0}\right)=0
$$

- if $z_{0}=0$., then the disk $D_{\varepsilon}(0) \longrightarrow f\left(D_{\varepsilon}(0)\right)$
as a 2-to-1 cover. (except at 0).

Pf: We need to show that, for any $U \subset \Omega$ open. $f(u)$ is open.
$\Leftrightarrow \quad \forall \omega_{0} \in f(u)$, there exists an open nhl of w_{0} inside $f(u)$
$\Leftrightarrow \quad \forall w_{0} \in f(u)$, there exists a $\delta>0$. small enough, sit. $D_{\delta}\left(\omega_{0}\right) \subset f(u)$.

Pick a point $z_{0} \in U$, sit. $f\left(z_{0}\right)=\omega_{0}$
Consider Taylor expansion around Z_{0}.
i.e. $\exists \varepsilon>0$, small engage sit. $\forall\left|z-z_{0}\right|<\varepsilon$,
(compare with $\$ 3.1$).
By shrinking ε, we may assume $h(z) \neq 0$ for $\left|z-z_{0}\right| \leqq \varepsilon$, distance between w_{0} and the image carve.
Claim: if $\delta^{\prime \prime}:=\inf _{z:\left|z-z_{0}\right|=\varepsilon}\left(\left|f(z)-\omega_{0}\right|\right)>0$
indeed.

$$
L=\inf _{\left|z-z_{0}\right| E \varepsilon}\left|z-z_{0}\right|^{n} \cdot|h(z)|
$$

$$
=\varepsilon^{n} \cdot \inf _{|z-7,|=s}|h(z)|>0
$$

$\left|z-z_{0}\right|=\varepsilon$

claim:
Finally, for any ω, sit. $\left|w-w_{0}\right|<\delta$, there exist some z, sit. $\left|z-z_{0}\right|<\varepsilon$, with $f(z)=w$. consider $f(z)-w$. for $z \in D_{\varepsilon}\left(z_{0}\right)$.

$$
\begin{aligned}
& f(z)=f\left(z_{0}\right)+f^{\prime}\left(z_{0}\right)\left(z-z_{0}\right)+f^{\prime \prime}\left(z_{0}\right) \cdot \frac{\left(z-z_{0}\right)^{2}}{2!}+\cdots \cdot \\
& =\omega_{0}+\frac{f^{(n)}\left(z_{0}\right) \frac{\left(z-z_{0}\right)^{n}}{n!}+f^{(n+1)}\left(z_{0}\right) \frac{\left(z-z_{0}\right)^{n+1}}{(n+1)!}+\cdots \cdot}{f^{(n)}\left(z_{0}\right) \neq 0} \\
& =w_{0}+\frac{\left(z-z_{0}\right)^{n}}{v} \cdot \frac{h(z)}{h(z)} \\
& h(z) \text { is colic. for }\left|z-z_{0}\right|<\varepsilon \text {. } \\
& h\left(z_{0}\right) \neq 0 \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& f(z)-w=\left(f(z)-w_{0}\right)-\left(w-w_{0}\right) \\
\because & \left|f(z)-w_{0}\right| \geqslant \delta>\left|w-w_{0}\right| . \quad \forall z \in C_{\Sigma}\left(z_{0}\right) .
\end{aligned}
$$

$\therefore \quad f(z)-\omega_{0}$ and $f(z)-w$ have the some number of zeros inside $C_{\varepsilon}(z)$, by Rouché the.
$\therefore f(z)-w$ has a zero inside $C_{\Sigma}\left(z_{0}\right)$. finishing the claim.

Thy: (Maximum Principle) Modulus
If $f: \Omega \rightarrow \mathbb{C}$ is a holmic funstant $\quad \Omega \subset \in$ op
notion, then. there is no $z_{0} \in \Omega$, sit.

$$
\left|f\left(z_{0}\right)\right|=\sup _{z \in \Omega}|f(z)|
$$

Pf: Assume there is such a Z_{0}, then. wo $f\left(z_{0}\right)$ has a noble. $\frac{D_{\varepsilon}\left(\omega_{0}\right)}{\text { also }}$ inside $f(\Omega)$,

nut there are points $\omega \in D_{\varepsilon}\left(\omega_{0}\right)$, st. $|\omega|>\left|\omega_{0}\right| . \#$.

HW6 \#5:
$C=\{|z|=1\} \quad$ unit circle
$-\mathrm{g}: C \rightarrow \mathbb{C}$ function on C.

$$
f(z):=\frac{1}{2 \pi i} \int_{C} \frac{g(w)}{w-z} d w . \quad \text { for } z \in\{|z|<\mid\}=A
$$

$A^{\circ} B$

Q1: (1) this integral make sense for region A, B.
(2). For any $Z_{0} \in C$, let $z=r \cdot Z_{0}$ for $r \in(0,1)$.

$$
\lim _{r \rightarrow 1} f\left(r, z_{0}\right)=g\left(z_{0}\right) . \quad \text { is it ? ? }
$$

Hint: consider the example: $g\left(e^{i t}\right)=e^{i n t}$ for $n \in \mathbb{Z}$., and see what output f you get.

Hab

- $e^{z} 1$ as $|z| \rightarrow \infty$ along a ray $z=r e^{i \theta}$, for fixed θ, for $r \rightarrow \infty$.

$$
\begin{aligned}
& e^{r \cdot e^{i \theta}}=e^{r \cos \theta+i r \cdot \sin \theta}=\underbrace{e^{r \cos \theta}}_{\text {modulus }} \underbrace{e^{i r \sin \theta}}_{\text {phase. }} \\
& \text { e.g } \theta=\frac{\pi}{2}, \sin \theta=1 \text {. phase }=e^{i r}
\end{aligned}
$$

a if $\cos \theta=0$, then modulus remains $=1$, phase is rotating, as $r \rightarrow \infty$.
, if $\sin \theta=0$, then phase is fixed. and positive. $e^{r \cos \theta} \rightarrow 0$ or ∞ depending on sign of $\cos \theta$ (as $r \rightarrow \infty$)

- Laurent expansion of a meromorphic function near a pole:
(ry thu in $\delta 3,1$). if Z_{0} is an order n pole of $f(z)$,
then near $z_{0} f(z)=\frac{b_{n}}{\left(z-z_{0}\right)^{n}}+\frac{b_{n-1}}{\left(z-z_{0}\right)^{n-1}}+\cdots+\frac{b_{1}}{z-z_{0}}$ + regular terms.

$$
h\left(z_{0}\right) \neq 0 .
$$

$$
f(z)=\frac{h(z)}{\left(z-z_{0}\right)^{n}} \text {, then Taylor expand }
$$

$h(z)$ to get the above expression.

