- Homotopy between 2 curves
- what is a curve in Ω ? where $\Omega \subset \mathbb{C}$ is a open $\gamma:[a, b.] \rightarrow \Omega$. piecewise $\left(C^{\prime}\right)$-smooth. connected subset? i.e. $\exists \quad a=t_{0}<t_{1}<\cdots<t_{n}=b, \quad \gamma:\left[t_{i}, t_{i+1}\right] \rightarrow \Omega$ is a differentiable
ex:
$\gamma:$
 function.
- homotopy between 2 curves is "an interpolation between two curves"

$$
\gamma_{0}, \gamma_{1}:[a, b] \rightarrow \Omega \quad \text { curves. } \gamma_{0}(b)=\gamma_{1}(b)=\beta \text {. }
$$

honotopy: $\gamma_{S}:[a, b] \rightarrow \Omega \quad S \in[0,1]$.

$$
\left.\begin{array}{ll}
\text { s.t. (1) } & \left.\gamma_{s}(t)\right|_{s=0}=\gamma_{0}(t) \\
& \left.r_{s}(t)\right|_{s=1}=\gamma_{1}(t)
\end{array}\right\} \theta t \in[a, b] .
$$

$$
\gamma_{0}(a)=\gamma_{1}(a)=\alpha
$$

"for
fixed s" (2) $\quad \forall s \in[0,1], \quad \gamma_{s}:[a, b] \rightarrow \Omega \quad$ a curve.,

$$
\gamma_{s}(a)=\alpha, \quad \gamma_{s}(b)=\beta
$$

(3) we want the function, $\gamma(s, t)=r_{s}(t)$

$$
\gamma:[0,1] \times[a, b] \rightarrow \Omega
$$

to be jointly continuous in s and t.
(the curves varia continuously in s).

- If γ_{0} and γ_{1} are two curves in Ω with the same endpoints, and if r_{0}, r_{1} are connected by a homotopy γ_{s}, then we say γ_{0} and γ_{1} homotopic.

Thu: Let Ω be an open connected set. $f: \Omega \rightarrow \mathbb{C}$ holes.
γ_{0}, r_{1} homotipic curves in Ω,
Then

$$
\int_{\gamma_{0}} f(z) d z=\int_{\gamma_{1}} f(z) d z
$$

("deformation invariance of contour integral").

Pf sketch: cut the s-interval $[0,1]$ into small enough segments. $0<S_{0}<S_{1}<\cdots<S_{N}=1$.
so that $\gamma_{s_{i}}, \gamma_{s_{i+1}}$ are "close together"

- Do a direct computation. for comparing integral along such nearby curves. by covering them with disks.

\int Ex:

claim: let $\Omega=\mathbb{D}$ a disk.
$z_{0}, z_{1} \in \Omega$ be two distinget points. then any cure from Z_{0} to Z_{1} is homotopic to the straight segments.
$\left.\begin{array}{l}\gamma_{0}:[0,1] \rightarrow \mathbb{D} \\ \gamma_{1}:[0,1] \rightarrow \mathbb{D}\end{array}\right\} \begin{aligned} & \text { any two } \\ & \text { corves ending } \\ & \text { at } z_{0}, z_{1} .\end{aligned}$

$$
\text { - } \gamma_{s}(t)=(1-s) \cdot \gamma_{0}(t)+s \cdot \gamma_{1}(t)
$$

 $\gamma_{0}(t)$ and $\gamma_{1}(t)$., that segment lies in \mathbb{D}. $(\because D$ is convex)
$\gamma_{s}(t)$ is indeed a curve in \mathbb{D},
 ending at z_{0}, and z_{1}.
(1) Choose ε small enough, such that

$$
\begin{array}{ll}
\forall s \in[0,1], & \forall t \in[a, b] \\
& D_{3 \varepsilon}\left(\gamma_{s}(t)\right) \subset \Omega
\end{array}
$$

Let $K=$ the image of the map

$$
\gamma:[0,1] \times[a, b] \rightarrow \Omega .
$$

γ is continuous, $[0,1] \times[a, b]$ is compact
$\Rightarrow K$ is compact.

$$
\begin{gathered}
\Rightarrow \quad \operatorname{dist}\left(K, \Omega^{c}\right)>0 . \quad\left(i f \Omega^{c} \neq \phi\right) \\
\text { Pf: } \operatorname{dist}\left(K, \Omega^{c}\right)=\inf _{x \in K} \operatorname{dist}\left(x, \Omega^{c}\right)=\inf _{x \in K} \inf _{\substack{ \\
y \in \Omega^{c}}} d(x, y) \text {. }
\end{gathered}
$$

- suppose $\operatorname{dist}\left(k, \Omega^{c}\right)=0$, then. $\exists\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \cdots$ $x_{i} \in K, \quad y_{i} \in \Omega^{c}$, s.t. $d\left(x_{i}, y_{i}\right)<\frac{1}{i}$, by compactness of K, \exists subsequence of $\left\{X_{n}\right\}$, called $X_{n_{1}}, X_{n_{2}}, \cdots$, sit. $\lim _{j \rightarrow \infty} x_{n j}=\hat{x} \in K$. Then we get

$$
d\left(x_{n_{j}}, y_{n_{j}}\right)<\frac{1}{n_{j}} \rightarrow 0 \quad \text { as } j \rightarrow \infty
$$

$g_{n_{j}} d\left(\hat{x}, y_{n_{j}}\right) \rightarrow 0$ as $j \rightarrow \infty$

$$
\int_{0}^{u} \Omega^{c} \quad \hat{x} \in \Omega, \exists u \neq x, u \subset \Omega \text {. }
$$

we have a contradiction: if $d\left(\hat{x}, y_{n_{j}}\right) \rightarrow 0, \quad y_{n_{j}}$ evil eventually be in U. contradicting of $y_{n_{j}} \notin \Omega$.

$$
\cdot \quad 3 \varepsilon=\frac{1}{2} \cdot \operatorname{dist}\left(K, \Omega^{c}\right) \text {. }
$$

(2) By uniform continuity of $\gamma:[0,1] \times[a, b] \rightarrow \Omega$.
$\exists \delta$, such that $\forall\left|S_{1}, S_{2}\right|<\delta$, we have.

$$
\sup _{t \in[a, b]}\left|\gamma_{s_{1}}(t)-\gamma_{s_{2}}(t)\right|<\varepsilon .
$$

(3). For any pair of S_{1}, S_{2}, st. $\left|s_{1}-s_{2}\right|<\delta_{\text {, we }}$ will show $\int_{\gamma_{s_{1}}} f(z) d z=\int_{\gamma_{s_{2}}} f(z) d z$.

$$
\begin{aligned}
& z_{0}=\omega_{0}=\alpha \\
& z_{n+1}=\omega_{n+1}=\beta .
\end{aligned}
$$

- cover both curves by disks D_{0}, \cdots, D_{n} of radius 2ε, such that. $\exists z_{0}, z_{1}, \cdots, z_{n+1}$ on $\gamma_{s_{1}}$ and $\omega_{0}, \omega_{1}, \cdots, \omega_{n+1}$ on $\gamma_{s_{2}}$,
D_{m} contains. z_{m}, z_{m+1}

$$
\begin{aligned}
& D_{1} \quad z_{1}, z_{2} \\
& w_{1}, w_{2}
\end{aligned}
$$

Fexample construction: "we choose z_{i} some $t_{0}<t_{1}<t_{2} \cdots$
one can then choose $D_{i}=D_{2 \varepsilon}\left(Z_{i}\right)$.

- $f o$ is hol'c on D_{m}, \exists primitive F_{m} of f on D_{m}. on the over lop $D_{m} \cap D_{m+1}$, where both F_{m} and F_{m+1} are defined, they at root differ by a coustant.

$$
F_{m+1}^{(7)}-F_{m}(z)=C \quad \text { on } D_{m} \cap D_{m+1} \text {. }
$$

$$
\begin{aligned}
& F_{m+1}\left(Z_{m+1}\right)-F_{m}\left(Z_{m+1}\right)=C \\
& F_{m+1}\left(W_{m+1}\right)-F_{m}\left(Z N_{m+1}\right)=C
\end{aligned}
$$

subtract them

$$
\begin{aligned}
& F_{m+1}\left(Z_{m+1}\right)-F_{m+1}\left(w_{m+1}\right)=F_{m}\left(z_{m+1}\right)-F_{m}\left(\omega_{m+1}\right) . \\
= & \int_{w_{m+1}}^{z_{m+1}} f d z
\end{aligned}
$$

(1) $\quad \int_{\gamma_{S_{1}}} f d z=\int_{z_{0}}^{z_{1}} f d z+\int_{z_{1}}^{z_{2}} f d z+\cdots+\int_{z_{n}}^{z_{n+1}} f d z$.

$$
=\underbrace{F_{0}\left(z_{1}\right)}-F_{0}\left(z_{0}\right)+F_{1}\left(z_{2}\right)-\underbrace{F_{1}\left(z_{1}\right)}+\cdots+F_{n}\left(z_{n+1}\right)-F_{n}\left(z_{n}\right)
$$

(2)

$$
\begin{aligned}
& \int_{r_{s_{2}}} f d z=F_{0}\left(\omega_{1}\right)-F_{0}\left(\omega_{0}\right)+F_{1}\left(\omega_{2}\right)-f_{1}\left(\omega_{1}\right)+\cdots+F_{n}\left(\omega_{n+1}\right)-F_{n}\left(\omega_{n}\right) \\
& (1)-(2)=-f_{0}\left(z_{0}\right)-\left(-F_{0}\left(\omega_{0}\right)\right)+f_{n}\left(z_{n+1}\right)-f_{n}\left(\omega_{n+1}\right) . \\
& \\
& =0 .
\end{aligned}
$$

by doing local modification within disks, we can turn a curve $\alpha, z_{1}, z_{2}, \cdots, z_{n}, \beta$ ψ

$$
\begin{aligned}
& \alpha, w_{1}, z_{1}, z_{2} \cdots, z_{n}, \beta^{\alpha}, F_{\omega_{1}}^{z_{1}} z_{\beta}^{z_{2}} \\
& \alpha, w_{1}, w_{2}, z_{2}, z_{3 j}, \cdots z_{n}, \beta_{0} \alpha_{\omega_{1}, \omega_{\omega_{2}}^{z_{2}} j_{\beta}}^{z_{2}} \\
& \text { (region = cornested, open). }
\end{aligned}
$$

- Def: simply connected region, for any 2 curves with $\xrightarrow[r_{1}]{z_{0}} \xrightarrow[r_{1}]{z_{1}}$ are homotopic. the same endpoints.

Ex: convex region are simply connected. (see the previous discussion on linear interpolation).

- "Star-shaped domain", ヨ an origin $e \in \Omega$
 sit. any print $z \in \Omega$ can be connected to e by a straight segments
- interior of "toy contour"

- failure of simply connected: if Ω has "holes". "puncture",

Thu: If Ω is a simply connected region $f: \Omega \rightarrow \mathbb{C} \quad h_{o} l^{\prime} c$
then. f has a primitive. F.
pf: pick a $z_{0} \in \Omega$, than define

$$
F(z)=\int_{z_{0}}^{z} f(\omega) d \omega
$$

τ along any path from z_{0} to Z.
this is well defined, since the integral only depends on the homotopy class of paths from z_{0} to z_{1} and there is a unique homotory class of path from z_{0} to z_{1}. domain

- check $F^{\prime}(z)=f(z) . .$.
- Conservative Vector field.
(2d): $\quad U_{x}(x, y), U_{y}(x, y)$, such that

$$
\begin{aligned}
& \partial y v_{x}= \\
v= & \partial_{x} V_{y} \\
& v_{x} \cdot d x+v_{y} \cdot d y . \\
& v \text { only depends on the homotopy class. }
\end{aligned}
$$

- Q: $\quad f: \Omega \rightarrow \mathbb{E}$ hole.
$\gamma \frac{\text { closed }}{\text { curve }}$ in Ω.

$$
\text { Q: } \quad \int_{r} \frac{f^{\prime}(z)}{f(z)} \cdot d z=\int_{f(\gamma)} \frac{1}{w} d w . \quad w=f(z)
$$

Ex: $\quad f(z)=z-\frac{1}{2} . \quad \gamma=$ unit circle.

$$
\begin{aligned}
& \int_{\gamma} \frac{f^{\prime}(z)}{f(z)} \cdot d z=\int_{|z|=1} \frac{1}{z-\frac{1}{2}} d z=2 \pi i . \\
& \int \frac{1}{w} d w=2 \pi i . \quad \hat{c}_{<r}
\end{aligned}
$$

$$
f(x)
$$

$$
\frac{1}{w} \cdot d w=d \cdot \ln (w)
$$

$$
\underline{\ln (\omega)}=\frac{\ln |\omega|}{\tau \text { is well-defined }}+\frac{i \cdot \arg (\omega)}{\tau} \text { is multivalued. }
$$

$$
\begin{aligned}
& \int_{C} d \cdot \ln |w|=0 \\
& \int d \cdot(i \cdot \arg w)=i \cdot 2 \pi .
\end{aligned}
$$

HW6 \#2.(2)
Laurent expansion around a pole
$f(z)$ is meromophic, z_{0} is a pole: oforder n,
$\begin{aligned} & \text { Lacrract } \\ & \text { expusion: }: \\ & \end{aligned}(z)=\underbrace{\frac{b_{n}}{\left(z-z_{0}\right)^{n}}+\frac{b_{n-1}}{\left(z-z_{0}\right)^{n-1}}+\cdots+\frac{b_{1}}{z-z_{0}}}+\underbrace{\frac{+\cdots}{a_{0}+a_{1}\left(z-z_{0}\right)}}_{\text {vegular }}$
$\frac{h(z)}{\left(z-z_{0}\right)^{n}}$, then Taybor expand $h(z)$ aroule z_{0}

$$
h(z)=c_{0}+\underline{c}_{1}\left(z-z_{0}\right)+\underline{c_{2}}\left(z-z_{0}\right)^{2}+\cdots
$$

