Name: \qquad

- You have 80 minutes to complete the exam, 9:40-11:00am.
- Please write your name and page number on every page that you submit. The submission deadline is at 11:10am.
- This is a open-book exam, you can use your textbook and notes.
- You may only use the results covered in class so far, including results in the lecture note and results in Stein up to Chapter 2.
- If you have question during the exam, you may contact me in zoom,
- Please write neatly. Answers which are illegible for the reader cannot be given credit.

Good Luck!

Question	Points	Score
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
8	20	
9	10	
Total	100	

$$
\left|\frac{z}{\bar{z}}\right|=\frac{|z|}{|\bar{z}|}
$$

1. (10 points, 2 points each)
(1) Use z and \bar{z} to express $\operatorname{Re}(z), \operatorname{Im}(z),|z|^{2}$.
(2) If $z=2020+1006 i$, then $|z / \bar{z}|=$?. $\quad 1$
(3) If $z=(1 / 2) e^{i \pi / 3}$, then $1 / \bar{z}=$? \quad a $e^{i \pi / 3}$
(3) If $z=(1 / 2) e^{i \pi / 3}$, then $1 / \bar{z}=$?
(4) Give an example of a continuous function $f: \mathbb{C} \rightarrow \mathbb{C}$, where f is hobomorphic at 0 but no other point in \mathbb{C}. (no justification needed) $f=\bar{z}^{2} . \quad f=|z|^{2}$.
(5) State the Cauchy-Riemann criterion for a function f to be holomorphic. $f=u+i v$,
2. (10 points, 2 points each) Let f be a holomorphic function on the unit open disk \mathbb{D}. Determine whether the following statements is true or false. No justification needed.

$$
f(z)=\sum_{n=0}^{\infty} a_{n} \cdot z^{n} \quad f_{n}(z)=\sum_{i=0}^{n} a_{i}-z^{i}
$$

T (1) There exists a sequence of polynomials f_{n}, such that for any compact set $K \subset \mathbb{D}, f_{n}$ converges to f uniformly on $K \quad V$ Power series expansion
\mathcal{F} (2) If f vanishes at infinitely many points in \mathbb{D}, then f is zero.
T (3) If there is a point $z_{0} \in \mathbb{D}$, such that $f^{(n)}\left(z_{0}\right)=0$ for all $n=0, \frac{\left.1, z^{z-1}\right)}{1, \cdots}$, then $f=0$. use power series expansion at Z_{0}
$F \quad$ (4) Let γ be a closed piecewise smooth curve in \vec{D}, vanishes in a possibly with self-intersection, u, v continuously differentiable

$$
|z|^{2}=x^{2}+y^{2}=\cdots=z \bar{z}
$$

$$
z=r e^{i \theta}, \quad \bar{z}=r \cdot e^{-i \theta}
$$

dominated
convergence
from:
(5) If $f(0)=0$ and $f^{\prime}(0)=1$, then $f(z)=z . \quad x$

$$
f(z)=0+z+z^{2}+z^{3}+\frac{1}{4} z^{4}
$$

3. (10 points) Let $\Omega \subset \mathbb{C}$ be a region (open and connected subset), and $f: \Omega \rightarrow$ \mathbb{C} a holomorphic function. Suppose there is a line $L \subset \Omega$, such that f is constant on L. Show that f is constant in Ω. Let that constant be c, then $f-c$
4. (10 point) Show that the function $f: \mathbb{C} \backslash[0,1] \rightarrow \mathbb{C}$

$$
f(z)=\int_{0}^{1} \frac{1}{z-t} d t
$$

$$
\frac{f(z+h)-f(z)}{h}=\frac{1}{h} \int_{0}^{1}\left(\frac{1}{z+h-t}-\frac{1}{z-t}\right) d t
$$

is holomorphic in $\mathbb{C} \backslash[0,1]$, and its derivative is

$$
f^{\prime}(z)=\int_{0}^{1} \frac{-1}{(z-t)^{2}} d t
$$

$$
\quad \rightarrow \int_{0}^{1} \frac{-1}{(z-t)^{2}}
$$

(Hint: Use difference quotient to compute the derivative. Do not pass differentiation under the integral sign without justification.)
$=\frac{\int_{0}^{1}\left(\frac{-1}{(z+h-t)(z-t)}\right) d t}{\longrightarrow \int_{0}^{1} \frac{-1}{(z-t)^{2}} d t \quad \text { as } h \rightarrow 0}$
5. (10 point) Let $K \subset \mathbb{C}$ be a compact set, and $f: K \rightarrow \mathbb{C}$ is a continuous function. Is it always possible to find a sequence of polynomials $\overline{f_{n}(z) \text {, such }}$ that f_{n} converges to f uniformly on K ? If yes, give a reference. If no, give your reason and a counter example. No. say $K=\{|z|=1\}$,
6. (10 point) If $f: \mathbb{C} \rightarrow \mathbb{C}$ is a holomorphic function, and there is a constant $C>0$, such that $|f(z)|<C(1+|z|)$. Show that $f(z)=a+b z$ for some $a, b \in \mathbb{C}$.
f has power series expansion, valid for all $z \in \mathbb{C}$
 and $K=\overline{\mathbb{D}}$.

Connected, them impossible.

$$
\text { alfertatively, consider } \quad f(z)=\sum_{n=0}^{\infty} a_{n} \cdot z^{n} \quad a_{n}=\frac{f^{(n)}(0)}{n!} \text {. Suffice to }
$$

Suffice to

$$
\begin{aligned}
& \text { alternatively, consia } \\
& f^{(2)}\left(z_{0}\right) \quad \forall z_{0} .
\end{aligned}
$$

$$
f^{(n)}(0)=0 \quad \forall n \geqslant 2 .
$$

$$
\left|f^{(2)}\left(z_{0}\right)\right| \leqslant \frac{21 \cdot C\left(1+1 z_{0}\right)}{R^{2}}
$$

$$
\text { By Cavalry estimate. }\left(\operatorname{cor} 4.3 \text { p48). }\|f\|_{C_{R}}\right.
$$

$$
\forall R>0 .
$$

$$
\left|f^{\left(n^{(n}()\right)}\right| \leqslant \frac{n}{R^{n}} \leq(1+R)
$$

$$
\text { Hence, let } R \rightarrow \infty \text {, we see }\left|f^{(n)}(0)\right|=0 . \quad \forall n \geqslant 2 \text {. }
$$

Liouville the:
7. (10 point) Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be an entire function. Assume that there exists a point $z_{0} \in \mathbb{C}$ and an open neighborhood $D_{r}\left(z_{0}\right)$, such that $f(\mathbb{C}) \cap D_{r}\left(z_{0}\right)=\emptyset$.
Show that f is a constant function. Apply hiouville theorem (cor 4.5, P50)
8. (20 points, 10 points each) Evaluate the following contour integrals.

- $\oint_{|z|=1} \frac{(z+2)(z+3)}{z(z+4)(z+5)} d z=$? • let

$$
\begin{align*}
& F(z)=\frac{(z+2)(z+3)}{(z+4)(z+5)} \text {. } F(z) \text { for } \text { for } \bar{D} . \tag{1}\\
& \begin{array}{c}
\int_{|z|=1} \frac{F(z)}{z} d z=2 \pi i \cdot F(0) \\
=2 \pi i \cdot \frac{3}{10}=\frac{3}{5} \pi i
\end{array} \\
& \text { By Cancer }
\end{align*}
$$

By Candy integne formula.

$$
\underbrace{z_{i}^{2}}_{-\infty}
$$

(2) For any real number $a>1$, evaluate

$$
\begin{aligned}
& \oint \frac{1}{(z-a)(z-a)} \frac{d z}{i z}=\oint \frac{1}{(z-a)\left(\frac{1}{z}-a\right)} \frac{d z}{i z} \oint_{|z|=1} \frac{1}{|z-a|^{2}}|d z| \quad|d z|=R \cdot d \theta \\
&= \oint \frac{-i}{(z-a)(1-a z)} d z=\oint \frac{+i a^{-1}}{(z-a)\left(z-a^{-1}\right)} d z \quad \\
&=R \cdot \frac{d z}{i z}=\frac{d z}{i z}
\end{aligned}
$$

$=R \cdot \frac{d z}{i z}=\frac{d z}{i z}$
$=\frac{2 \pi \cdot a^{-1}}{a-a^{-1}} \quad \begin{aligned} & \overline{\mathbb{D}}, z_{0} \in \mathbb{C} \text { with }\left|z_{0}\right|=1 \text {. Let } f(z)=\underbrace{\frac{g(z)}{z-z_{0}}} \text {. Consider the follow sion power series }\end{aligned}$

$$
=\frac{2 \pi}{a^{2}-1}
$$

Show that

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{a_{n+1}}=z_{0}
$$

(1) radius of
convergeme of $(*)$ is 1
(Hint: write $g(z)=g\left(z_{0}\right)+\left(z-z_{0}\right) h(z)$.)
$\Rightarrow \lim _{n \rightarrow 1} \frac{\left|a_{n}\right|}{\left|a_{n+1}\right|}=1$

$$
\text { pf: } f(z)=\underbrace{\frac{g\left(z_{0}\right)}{z-z_{0}}}+\underbrace{h(z))}
$$

- consider power series expansion of $h(z)$ at $z=0$

$$
h(z)=\sum_{n=0}^{\infty} b_{n} z^{n}
$$

It's radius of convergence is $R>1$, i.e.

$$
\limsup _{n \rightarrow \infty}\left|b_{n}\right|^{\frac{1}{n}}=\frac{1}{R}<1
$$

Let $\varepsilon>0$ be small enough, such that $\frac{1}{R}<1-\varepsilon<1$

$$
\begin{aligned}
& \exists N_{0} \text {, set } \forall n>N_{0}, \quad\left|b_{n}\right|^{\frac{1}{n}}<(1-\varepsilon) \text {, ide. }\left|b_{n}\right|<(1-\varepsilon)^{n} \text {. } \\
& \text { - } \frac{g\left(z_{0}\right)}{z-z_{0}}=\frac{-g\left(z_{0}\right)}{z_{0}} \frac{1}{1-z\left(z_{0}\right.}=\underline{\frac{-g\left(z_{0}\right)}{z_{0}}}\left(1+\left(\frac{z}{z_{0}}\right)+\left(\frac{z}{z_{0}}\right)^{2}+\cdots\right) \\
& =\sum_{n=0}^{\infty} C_{n} \cdot z^{n}, \quad C_{n}=\frac{-g\left(z_{0}\right)}{z_{0}} \cdot \frac{1}{z_{0}^{n}} \\
& \lim _{n \rightarrow \infty} \frac{c_{n}}{c_{n+1}}=z_{0} \\
& \text { - } \lim _{n \rightarrow \infty} \frac{\left|b_{n}\right|}{\left|c_{n}\right|} \leqslant \lim _{n \rightarrow \infty} \frac{(1-\varepsilon)^{n}}{\left|g\left(z_{0}\right)\right|}=0 \text {. } \\
& \therefore \lim _{n \rightarrow \infty} \frac{a_{n}}{a_{n+1}}=\lim _{n \rightarrow \infty} \frac{b_{n}+c_{n}}{b_{n+1}+c_{n+1}}=\lim _{n \rightarrow \infty} \frac{\frac{b_{n}}{c_{n}}+1}{\frac{b_{n+1}}{c_{n+1}}+1} \cdot \lim \frac{c_{n}}{c_{n+1}}=z_{0}
\end{aligned}
$$

