Math 185 First Midterm October 6, 2020

Name:

e You have 80 minutes to complete the exam, 9:40-11:00am.

e Please write your name and page number on every page that you submit.
The submission deadline is at 11:10am.

e This is a open-book exam, you can use your textbook and notes.

e You may only use the results covered in class so far, including results in
the lecture note and results in Stein up to Chapter 2.

e If you have question during the exam, you may contact me in zoom,

e Please write neatly. Answers which are illegible for the reader cannot be
given credit.

Good Luck!
Question | Points | Score
1 10
2 10
3 10
4 10
5 10
6 10
7 10
8 20
9 10
Total 100
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1. (10 points, 2 points each -
( p p ) [2\ - Xl_(_(j'l- - =2
(1) Use z and Z to express Re(z), Im(2), |z|?. o
(2) If z = 2020 + 10064, then |z/z| =7. 4 oy 22ve’”, Z= o0
. \ “_/_’\_
5 3) If = = (1/2)¢"/3, then 1/2 =7 2. € °
(4) Give an example of a gp_r_u‘.a_wfunctlon f: C — C, where f is holo-
\B\ % morphic at 0 but no other point in C. (no justification needed) -S’ z° _g - qls

(5) State the Cauchy—Rlemann criterion for a function f to be holomorphlc -§ SRV VIN

Wy et Iy = dxl = -y - ;
2. (10 points, 2 pomts each) Let f be a holgmorphlc functlor? on the unit open - WV Contin |

disk D. Determine whether the follow1gg statements is true or false. No di-gg‘evcvdn‘w&e
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(1) There exists a sequence of polynomials f,, such that for any compact set

~ K CD, f, converges to f uniformly on K 1/ Yower Sevies Lxjarsi

(2) If f vanishes at infinitely many points in ), then f is zero. X ¢in Paritd sm.
(3) If there is a point zy € D, such that f (%) =0 for all n = 0,1,

then f = 0. v~ nge [)owcvscuos evousine ok 2, o=
= Vanishes v o nbhd of 2,
(4) Let v be a closed piecewise smooth curve in D, possfbly with self-intersection,

then it is possible thatf f(z)dz #0. X
£ (5) It £(0) = 0 and f'(0) = 1, then f(z) = X for= 0424 %123
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3. (10 points) Let 2 C C be a region (open and connected subset), and f : Q —
C a holomorphic function. Suppose there is a line L C 2, such that f is
constant on L. Show that f is constant in Q. |k +‘hak constadks be <, +hen ‘g ¢

i on L. iy Thm &8 in Stein,
. (10 point) Show that the function f : C\[0,1] — C Vanidaes Popley

N P LS Uy C o

is holomorphic in C\[0,1], and its derivative is = S( (Z o :5 (- o) at
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(Hint: Use difference quotient to compute the derivative. Do not pass differ- 9,_? aﬁeam.&l
entiation under the integral sign without justification.) - fe hoo.
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. (10 point) Let K C C be a compact set, and f : K — C is a continous O ‘gl 1S covrt tnuowg
function. Is it always possible to find a sequence of polynomials f,(z), such ad K=D
that f,, converges to f uniformly on K7 If yes, give a reference. If no, give .
(5 Ak true ©

your reason and a counter example. No. o R= §2l=t % )

. (10 point) If f : C — C is a holomorphic function, and there is a constant @ l‘g -? s hole
C > 0, such that |f(z)] < C(1 + |z|). Show that f(z) = a + bz for some bk RS i et
— e ne

a,b e C.
Connected | +howm
! L ) y all -
‘g MS %W seried KZDCWL \GV\) UQ“QAQQ AFLN ce G I\rwprSI‘o\f‘_.

B ’?(h)(°> S7 . hbb\}
ve 5 a2’ an= 12 A o s
dlonakvdy 0™ dor 30 b " Cr

)
%m(%w Y Zo. I CE AR

A e
\ ’ — \%”(g\ ¢ CC+R> Y R20.

RZ R \-/\,-\_,
_= Heones , LK RO W, (,e sen \ 031:0 ¥ nz2
)O D.,S(e"WQ )




Loy ille Hhen: bowece'

' ; b
o Ce®y) ,(ﬂ"@ .

H(’J\L . C ‘g \71\ ’

N
!

_—S /
\-?(%t)”%J?Y AN
( ( 7. (10 point) Let f : C — C be an entire function. Assume that there exists a

v point zg € C and an open neighborhood D,.(z), such that f(C)ND,(z) = 0.
\ _(; (- Show that f is a constant function. APPL
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N * 8. (20 points, 10 points each) Evaluate the following contour integrals. 4o J
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S 0 -
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(2) For any real number a > 1 evaluate S F—%’) dz = 2y B
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, 9. (10 point) Let g(z ) be a holomorphlc function on an open neighborhood of
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