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Corollary 7.3 If f is holomorphic in a disc Dgr(z9), and u = Re(f),
then

1 [ ,
u(zo) = o / u(zo +re®)df,  for any 0 <r < R.
0

Recall that u is harmonic whenever f is holomorphic, and in fact, the
above corollary is a property enjoyed by every harmonic function in the
disc Dg(zp). This follows from Exercise 12 in Chapter 2, which shows
that every harmonic function in a disc is the real part of a holomorphic
function in that disc.

8 Exercises

1. Using Euler’s formula

Gins — Tz efiﬂz
B 2 '
show that the complex zeros of sinmz are exactly at the integers, and that they
are each of order 1.

Calculate the residue of 1/sin7z at z =n € Z.

2. Evaluate the integral

/°° dx
oo Lzt

Where are the poles of 1/(1 + z*)?

3. Show that

oo —a

cos x e

3 sdr=m , for a > 0.
o *ta a

4. Show that

/ TIMT G — me *,  for all a > 0.
J_oo %+ a?

5. Use contour integration to show that

o —2mix T _onlg]

for all £ real.
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6. Show that

(1 4 z2)nt1 - 2:4-6---(2n)

/°° dx 1-3-5---(2n — 1)

—oo

7. Prove that

2 do _ 2ma b
. (@t cos0) = @ 1) whenever a > 1.

8. Prove that

/2” o or
o a-+bcostd /a2 _b2

if @ > |b| and a,b € R.

9. Show that

1
/ log(sinx) doz = — log 2.
0

[Hint: Use the contour shown in Figure 9.]

0 1

Figure 9. Contour in Exercise 9

10. Show that if a > 0, then

> logx ™
dx = — loga.
-/0 2+ T 2 oea

[Hint: Use the contour in Figure 10.]
11. Show that if |a| < 1, then

27 .
/ log|1 — ae®|do = 0.
0
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ia
R
—R —€ € R

Figure 10. Contour in Exercise 10

Then, prove that the above result remains true if we assume only that |a| < 1.

12. Suppose u is not an integer. Prove that

1 m°
Zoo (u+mn)2  (sinmu)?

by integrating
mcotmz

TR

over the circle |z = Ry = N 4+ 1/2 (N integral, N > |u]), adding the residues of
f inside the circle, and letting N tend to infinity.

Note. Two other derivations of this identity, using Fourier series, were given in
Book L.

13. Suppose f(z) is holomorphic in a punctured disc D,(z0) — {z0}. Suppose also
that

[f(2)] < Alz = 20| 7

for some € > 0, and all z near zp. Show that the singularity of f at zo is removable.

14. Prove that all entire functions that are also injective take the form
f(z) = az+ b with a,b € C, and a # 0.

[Hint: Apply the Casorati-Weierstrass theorem to f(1/z).]

15. Use the Cauchy inequalities or the maximum modulus principle to solve the
following problems:

(a) Prove that if f is an entire function that satisfies

sup |f(z)| < AR* + B
|z|=R
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for all R > 0, and for some integer k > 0 and some constants A, B > 0, then
f is a polynomial of degree < k.

(b) Show that if f is holomorphic in the unit disc, is bounded, and converges
uniformly to zero in the sector § < argz < ¢ as |z| — 1, then f = 0.

(¢) Let wi,...,w, be points on the unit circle in the complex plane. Prove that
there exists a point z on the unit circle such that the product of the distances
from z to the points wj, 1 < j < n, is at least 1. Conclude that there exists
a point w on the unit circle such that the product of the distances from w
to the points wj, 1 < j < n, is exactly equal to 1.

(d) Show that if the real part of an entire function f is bounded, then f is
constant.

16. Suppose f and g are holomorphic in a region containing the disc |z| < 1.
Suppose that f has a simple zero at z = 0 and vanishes nowhere else in |z| < 1.
Let

fe(z) = f(2) + €9(2).
Show that if € is sufficiently small, then
(a) fe(z) has a unique zero in |z| <1, and

(b) if zc is this zero, the mapping € — z. is continuous.

17. Let f be non-constant and holomorphic in an open set containing the closed
unit disc.

(a) Show that if |f(z)] = 1 whenever |z| = 1, then the image of f contains the
unit disc. [Hint: One must show that f(z) = wo has a root for every wo € D.
To do this, it suffices to show that f(z) =0 has a root (why?). Use the
maximum modulus principle to conclude.]

(b) If |f(2)| > 1 whenever |z|] =1 and there exists a point zo € D such that
|f(z0)| < 1, then the image of f contains the unit disc.

18. Give another proof of the Cauchy integral formula
1 f(Q)
=— [ —=d
1) 2me /C (—=z ¢
using homotopy of curves.
[Hint: Deform the circle C' to a small circle centered at z, and note that the

quotient (f(¢) — f(2))/(¢ — z) is bounded.]

19. Prove the maximum principle for harmonic functions, that is:
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(a) If uw is a non-constant real-valued harmonic function in a region €2, then u
cannot attain a maximum (or a minimum) in €.

(b) Suppose that Q is a region with compact closure Q. If u is harmonic in Q
and continuous in €2, then

sup [u(2)| < sup |u(z)].
zeQ 2€Q-Q

[Hint: To prove the first part, assume that u attains a local maximum at zo. Let f
be holomorphic near zo with uw = Re(f), and show that f is not open. The second
part follows directly from the first.]

20. This exercise shows how the mean square convergence dominates the uniform
convergence of analytic functions. If U is an open subset of C we use the notation

1/2
1l = ( /U |f<z>|2dxdy)

for the mean square norm, and
[1£1loe )y = sup [£(2)]
zeU

for the sup norm.

(a) If f is holomorphic in a neighborhood of the disc D;(z0), show that for any
0 < s < r there exists a constant C' > 0 (which depends on s and ) such
that

1 fllzoe (Do (z0)) < Cllf 2Dy (20)) -

(b) Prove that if {f,} is a Cauchy sequence of holomorphic functions in the
mean square norm || - || 2y, then the sequence {f»} converges uniformly
on every compact subset of U to a holomorphic function.

[Hint: Use the mean-value property.]

21. Certain sets have geometric properties that guarantee they are simply con-
nected.

(a) An open set Q C C is convex if for any two points in 2, the straight line
segment between them is contained in 2. Prove that a convex open set is
simply connected.

(b) More generally, an open set 2 C C is star-shaped if there exists a point
zo € ) such that for any z € €2, the straight line segment between z and zo
is contained in 2. Prove that a star-shaped open set is simply connected.
Conclude that the slit plane C — {(—o0, 0]} (and more generally any sector,
convex or not) is simply connected.
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(¢) What are other examples of open sets that are simply connected?

22. Show that there is no holomorphic function f in the unit disc D that extends
continuously to dD such that f(z) = 1/z for z € 9D.

9 Problems

1.* Consider a holomorphic map on the unit disc f:D — C which satisfies
f(0) = 0. By the open mapping theorem, the image f(D) contains a small disc
centered at the origin. We then ask: does there exist » > 0 such that for all
f:D — C with f(0) =0, we have D,(0) C f(D)?

(a) Show that with no further restrictions on f, no such r exists. It suffices to
find a sequence of functions {f.} holomorphic in D such that 1/n ¢ f(D).
Compute f,,(0), and discuss.

(b) Assume in addition that f also satisfies f'(0) = 1. Show that despite this
new assumption, there exists no r > 0 satisfying the desired condition.

[Hint: Try f(z) = e(e*/< — 1)

The Koebe-Bieberbach theorem states that if in addition to f(0) =0 and
f/(0) =1 we also assume that f is injective, then such an r exists and the best
possible value is r = 1/4.

(c) As afirst step, show that if h(z) = L + co + c1z + c22” + -+ is analytic and
injective for 0 < |z < 1, then >.°°  n|c,|* < 1.

[Hint: Calculate the area of the complement of h(D,(0) — {0}) where
0<p<1, andlet p— 1]

(d) If f(2) = 2z 4+ a22® + - - - satisfies the hypotheses of the theorem, show that
there exists another function g satisfying the hypotheses of the theorem such
that g*(z) = f(2?).

[Hint:  f(z)/z is nowhere vanishing so there exists ¢ such that
¥?(2) = f(2)/z and ¥(0) = 1. Check that g(z) = 22 (2?) is injective.]

(e) With the notation of the previous part, show that |az| < 2, and that equality
holds if and only if

flz) = m for some 6 € R.

[Hint: What is the power series expansion of 1/g(z)? Use part (c).]

(f) If h(2) =L +co+c1z+c2z® + -+ is injective on D and avoids the values
z1 and z2, show that |z1 — 22| < 4.

[Hint: Look at the second coefficient in the power series expansion of

1/(h(2) = zj) ]
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(g) Complete the proof of the theorem. [Hint: If f avoids w, then 1/f avoids 0
and 1/w.]

2. Let u be a harmonic function in the unit disc that is continuous on its closure.
Deduce Poisson’s integral formula

- 1 2m 1_|ZO|2 0 9 "
U(Zo)—ﬁ ) mu(e )d or |ZO|<1

from the special case zo = 0 (the mean value theorem). Show that if zo = re’?,
then

1— 20> 1—r?
le?® — 2012~ 1 —2rcos(d — ) + 72

:PT(H_SO)v

and we recover the expression for the Poisson kernel derived in the exercises of the
previous chapter.

[Hint: Set uo(z) = u(7T'(z)) where

zZ0 — %
T(z) = ———.
() =15

Prove that uo is harmonic. Then apply the mean value theorem to ug, and make
a change of variables in the integral.]

3. If f(z) is holomorphic in the deleted neighborhood {0 < |z — zo| < r} and has
a pole of order k at zo, then we can write

&_&_..._’_L
(z — z0)* (z — 20)

f(z) = +9(2)

where g is holomorphic in the disc {|z — zo| < r}. There is a generalization of this
expansion that holds even if 2 is an essential singularity. This is a special case of
the Laurent series expansion, which is valid in an even more general setting.

Let f be holomorphic in a region containing the annulus {z : r1 < |z — zo| < r2}
where 0 < r1 < r2. Then,

[e'e]

[ =Y anz—z)"

n=-—oo

where the series converges absolutely in the interior of the annulus. To prove this,
it suffices to write

fe) == [ L g 1/0 JE) 4

"o CTQC—z T omi Tlg—z

when r1 < |z — 20| < r2, and argue as in the proof of Theorem 4.4, Chapter 2.
Here C,, and C,., are the circles bounding the annulus.
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4.* Suppose 2 is a bounded region. Let L be a (two-way infinite) line that intersects
Q. Assume that Q N L is an interval /. Choosing an orientation for L, we can define
Q; and €2, to be the subregions of © lying strictly to the left or right of L, with
Q=Q,UlUQ, a disjoint union. If €; and €2, are simply connected, then 2 is
simply connected.

5." Let

9(z) = L hz)

= - dx
2wy x— 2

where h is continuous and supported in [—M, M].

(a) Prove that the function ¢ is holomorphic in C — [-M, M|, and vanishes
at infinity, that is, lim,|_ |g(2)| = 0. Moreover, the “jump” of g across
[-M, M] is h, that is,

h(z) = lim g(z + i€) — g(x — ie).

€e—0,e>0

[Hint: Express the difference g(z + i€) — g(x — i€) in terms of a convolution
of h with the Poisson kernel.]

(b) If h satisfies a mild smoothness condition, for instance a Holder condition
with exponent a, that is, |h(z) — h(y)| < Clz — y|® for some C > 0 and all
x,y € [-M, M], then g(x + ie) and g(z — i€) converge uniformly to functions
g+(z) and g—(z) as € — 0. Then, g can be characterized as the unique
holomorphic function that satisfies:

(i) g is holomorphic outside [—M, M],
(ii) g¢ vanishes at infinity,
(iii) g(x + ie) and g(x — i€) converge uniformly as e — 0 to functions g+ (z)
and g_(z) with
9+(x) — g-(x) = h(z).

[Hint: If G is another function satisfying these conditions, g — G is entire.]



