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Corollary 7.3 If f is holomorphic in a disc DR(z0), and u = Re(f),
then

u(z0) =
1
2π

∫ 2π

0

u(z0 + reiθ) dθ, for any 0 < r < R.

Recall that u is harmonic whenever f is holomorphic, and in fact, the
above corollary is a property enjoyed by every harmonic function in the
disc DR(z0). This follows from Exercise 12 in Chapter 2, which shows
that every harmonic function in a disc is the real part of a holomorphic
function in that disc.

8 Exercises

1. Using Euler’s formula

sin πz =
eiπz − e−iπz

2i
,

show that the complex zeros of sin πz are exactly at the integers, and that they
are each of order 1.

Calculate the residue of 1/ sin πz at z = n ∈ Z.

2. Evaluate the integral
∫ ∞

−∞

dx
1 + x4

.

Where are the poles of 1/(1 + z4)?

3. Show that
∫ ∞

−∞

cos x
x2 + a2

dx = π
e−a

a
, for a > 0.

4. Show that
∫ ∞

−∞

x sin x
x2 + a2

dx = πe−a, for all a > 0.

5. Use contour integration to show that

∫ ∞

−∞

e−2πixξ

(1 + x2)2
dx =

π
2

(1 + 2π|ξ|)e−2π|ξ|

for all ξ real.
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6. Show that
∫ ∞

−∞

dx
(1 + x2)n+1

=
1 · 3 · 5 · · · (2n − 1)

2 · 4 · 6 · · · (2n)
· π.

7. Prove that
∫ 2π

0

dθ
(a + cos θ)2

=
2πa

(a2 − 1)3/2
, whenever a > 1.

8. Prove that
∫ 2π

0

dθ
a + b cos θ

=
2π√

a2 − b2

if a > |b| and a, b ∈ R.

9. Show that
∫ 1

0

log(sin πx) dx = − log 2.

[Hint: Use the contour shown in Figure 9.]
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Figure 9. Contour in Exercise 9

10. Show that if a > 0, then

∫ ∞

0

log x
x2 + a2

dx =
π
2a

log a.

[Hint: Use the contour in Figure 10.]

11. Show that if |a| < 1, then

∫ 2π

0

log |1 − aeiθ| dθ = 0.
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Figure 10. Contour in Exercise 10

Then, prove that the above result remains true if we assume only that |a| ≤ 1.

12. Suppose u is not an integer. Prove that

∞∑

n=−∞

1
(u + n)2

=
π2

(sin πu)2

by integrating

f(z) =
π cotπz
(u + z)2

over the circle |z| = RN = N + 1/2 (N integral, N ≥ |u|), adding the residues of
f inside the circle, and letting N tend to infinity.
Note. Two other derivations of this identity, using Fourier series, were given in
Book I.

13. Suppose f(z) is holomorphic in a punctured disc Dr(z0) − {z0}. Suppose also
that

|f(z)| ≤ A|z − z0|−1+ε

for some ε > 0, and all z near z0. Show that the singularity of f at z0 is removable.

14. Prove that all entire functions that are also injective take the form
f(z) = az + b with a, b ∈ C, and a &= 0.

[Hint: Apply the Casorati-Weierstrass theorem to f(1/z).]

15. Use the Cauchy inequalities or the maximum modulus principle to solve the
following problems:

(a) Prove that if f is an entire function that satisfies

sup
|z|=R

|f(z)| ≤ ARk + B
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for all R > 0, and for some integer k ≥ 0 and some constants A, B > 0, then
f is a polynomial of degree ≤ k.

(b) Show that if f is holomorphic in the unit disc, is bounded, and converges
uniformly to zero in the sector θ < arg z < ϕ as |z| → 1, then f = 0.

(c) Let w1, . . . , wn be points on the unit circle in the complex plane. Prove that
there exists a point z on the unit circle such that the product of the distances
from z to the points wj , 1 ≤ j ≤ n, is at least 1. Conclude that there exists
a point w on the unit circle such that the product of the distances from w
to the points wj , 1 ≤ j ≤ n, is exactly equal to 1.

(d) Show that if the real part of an entire function f is bounded, then f is
constant.

16. Suppose f and g are holomorphic in a region containing the disc |z| ≤ 1.
Suppose that f has a simple zero at z = 0 and vanishes nowhere else in |z| ≤ 1.
Let

fε(z) = f(z) + εg(z).

Show that if ε is sufficiently small, then

(a) fε(z) has a unique zero in |z| ≤ 1, and

(b) if zε is this zero, the mapping ε (→ zε is continuous.

17. Let f be non-constant and holomorphic in an open set containing the closed
unit disc.

(a) Show that if |f(z)| = 1 whenever |z| = 1, then the image of f contains the
unit disc. [Hint: One must show that f(z) = w0 has a root for every w0 ∈ D.
To do this, it suffices to show that f(z) = 0 has a root (why?). Use the
maximum modulus principle to conclude.]

(b) If |f(z)| ≥ 1 whenever |z| = 1 and there exists a point z0 ∈ D such that
|f(z0)| < 1, then the image of f contains the unit disc.

18. Give another proof of the Cauchy integral formula

f(z) =
1

2πi

∫

C

f(ζ)
ζ − z

dζ

using homotopy of curves.

[Hint: Deform the circle C to a small circle centered at z, and note that the
quotient (f(ζ) − f(z))/(ζ − z) is bounded.]

19. Prove the maximum principle for harmonic functions, that is:
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(a) If u is a non-constant real-valued harmonic function in a region Ω, then u
cannot attain a maximum (or a minimum) in Ω.

(b) Suppose that Ω is a region with compact closure Ω. If u is harmonic in Ω
and continuous in Ω, then

sup
z∈Ω

|u(z)| ≤ sup
z∈Ω−Ω

|u(z)|.

[Hint: To prove the first part, assume that u attains a local maximum at z0. Let f
be holomorphic near z0 with u = Re(f), and show that f is not open. The second
part follows directly from the first.]

20. This exercise shows how the mean square convergence dominates the uniform
convergence of analytic functions. If U is an open subset of C we use the notation

‖f‖L2(U) =

(∫

U

|f(z)|2 dxdy

)1/2

for the mean square norm, and

‖f‖L∞(U) = sup
z∈U

|f(z)|

for the sup norm.

(a) If f is holomorphic in a neighborhood of the disc Dr(z0), show that for any
0 < s < r there exists a constant C > 0 (which depends on s and r) such
that

‖f‖L∞(Ds(z0)) ≤ C‖f‖L2(Dr(z0)) .

(b) Prove that if {fn} is a Cauchy sequence of holomorphic functions in the
mean square norm ‖ · ‖L2(U), then the sequence {fn} converges uniformly
on every compact subset of U to a holomorphic function.

[Hint: Use the mean-value property.]

21. Certain sets have geometric properties that guarantee they are simply con-
nected.

(a) An open set Ω ⊂ C is convex if for any two points in Ω, the straight line
segment between them is contained in Ω. Prove that a convex open set is
simply connected.

(b) More generally, an open set Ω ⊂ C is star-shaped if there exists a point
z0 ∈ Ω such that for any z ∈ Ω, the straight line segment between z and z0

is contained in Ω. Prove that a star-shaped open set is simply connected.
Conclude that the slit plane C − {(−∞, 0]} (and more generally any sector,
convex or not) is simply connected.
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(c) What are other examples of open sets that are simply connected?

22. Show that there is no holomorphic function f in the unit disc D that extends
continuously to ∂D such that f(z) = 1/z for z ∈ ∂D.

9 Problems

1.∗ Consider a holomorphic map on the unit disc f : D → C which satisfies
f(0) = 0. By the open mapping theorem, the image f(D) contains a small disc
centered at the origin. We then ask: does there exist r > 0 such that for all
f : D → C with f(0) = 0, we have Dr(0) ⊂ f(D)?

(a) Show that with no further restrictions on f , no such r exists. It suffices to
find a sequence of functions {fn} holomorphic in D such that 1/n /∈ f(D).
Compute f ′

n(0), and discuss.

(b) Assume in addition that f also satisfies f ′(0) = 1. Show that despite this
new assumption, there exists no r > 0 satisfying the desired condition.

[Hint: Try fε(z) = ε(ez/ε − 1).]

The Koebe-Bieberbach theorem states that if in addition to f(0) = 0 and
f ′(0) = 1 we also assume that f is injective, then such an r exists and the best
possible value is r = 1/4.

(c) As a first step, show that if h(z) = 1
z + c0 + c1z + c2z

2 + · · · is analytic and
injective for 0 < |z| < 1, then

∑∞
n=1 n|cn|2 ≤ 1.

[Hint: Calculate the area of the complement of h(Dρ(0) − {0}) where
0 < ρ < 1, and let ρ→ 1.]

(d) If f(z) = z + a2z
2 + · · · satisfies the hypotheses of the theorem, show that

there exists another function g satisfying the hypotheses of the theorem such
that g2(z) = f(z2).

[Hint: f(z)/z is nowhere vanishing so there exists ψ such that
ψ2(z) = f(z)/z and ψ(0) = 1. Check that g(z) = zψ(z2) is injective.]

(e) With the notation of the previous part, show that |a2| ≤ 2, and that equality
holds if and only if

f(z) =
z

(1 − eiθz)2
for some θ ∈ R.

[Hint: What is the power series expansion of 1/g(z)? Use part (c).]

(f) If h(z) = 1
z + c0 + c1z + c2z

2 + · · · is injective on D and avoids the values
z1 and z2, show that |z1 − z2| ≤ 4.

[Hint: Look at the second coefficient in the power series expansion of
1/(h(z) − zj).]
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(g) Complete the proof of the theorem. [Hint: If f avoids w, then 1/f avoids 0
and 1/w.]

2. Let u be a harmonic function in the unit disc that is continuous on its closure.
Deduce Poisson’s integral formula

u(z0) =
1
2π

∫ 2π

0

1 − |z0|2

|eiθ − z0|2
u(eiθ) dθ for |z0| < 1

from the special case z0 = 0 (the mean value theorem). Show that if z0 = reiϕ,
then

1 − |z0|2

|eiθ − z0|2
=

1 − r2

1 − 2r cos(θ − ϕ) + r2
= Pr(θ − ϕ),

and we recover the expression for the Poisson kernel derived in the exercises of the
previous chapter.

[Hint: Set u0(z) = u(T (z)) where

T (z) =
z0 − z
1 − z0z

.

Prove that u0 is harmonic. Then apply the mean value theorem to u0, and make
a change of variables in the integral.]

3. If f(z) is holomorphic in the deleted neighborhood {0 < |z − z0| < r} and has
a pole of order k at z0, then we can write

f(z) =
a−k

(z − z0)k
+ · · · + a−1

(z − z0)
+ g(z)

where g is holomorphic in the disc {|z − z0| < r}. There is a generalization of this
expansion that holds even if z0 is an essential singularity. This is a special case of
the Laurent series expansion, which is valid in an even more general setting.

Let f be holomorphic in a region containing the annulus {z : r1 ≤ |z − z0| ≤ r2}
where 0 < r1 < r2. Then,

f(z) =
∞∑

n=−∞

an(z − z0)
n

where the series converges absolutely in the interior of the annulus. To prove this,
it suffices to write

f(z) =
1

2πi

∫

Cr2

f(ζ)
ζ − z

dζ − 1
2πi

∫

Cr1

f(ζ)
ζ − z

dζ

when r1 < |z − z0| < r2, and argue as in the proof of Theorem 4.4, Chapter 2.
Here Cr1 and Cr2 are the circles bounding the annulus.
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4.∗ Suppose Ω is a bounded region. Let L be a (two-way infinite) line that intersects
Ω. Assume that Ω ∩ L is an interval I . Choosing an orientation for L, we can define
Ωl and Ωr to be the subregions of Ω lying strictly to the left or right of L, with
Ω = Ωl ∪ I ∪ Ωr a disjoint union. If Ωl and Ωr are simply connected, then Ω is
simply connected.

5.∗ Let

g(z) =
1

2πi

∫ M

−M

h(x)
x − z

dx

where h is continuous and supported in [−M, M ].

(a) Prove that the function g is holomorphic in C − [−M, M ], and vanishes
at infinity, that is, lim|z|→∞ |g(z)| = 0. Moreover, the “jump” of g across
[−M, M ] is h, that is,

h(x) = lim
ε→0,ε>0

g(x + iε) − g(x − iε).

[Hint: Express the difference g(x + iε) − g(x − iε) in terms of a convolution
of h with the Poisson kernel.]

(b) If h satisfies a mild smoothness condition, for instance a Hölder condition
with exponent α, that is, |h(x) − h(y)| ≤ C|x − y|α for some C > 0 and all
x, y ∈ [−M, M ], then g(x + iε) and g(x − iε) converge uniformly to functions
g+(x) and g−(x) as ε→ 0. Then, g can be characterized as the unique
holomorphic function that satisfies:

(i) g is holomorphic outside [−M, M ],

(ii) g vanishes at infinity,

(iii) g(x + iε) and g(x − iε) converge uniformly as ε → 0 to functions g+(x)
and g−(x) with

g+(x) − g−(x) = h(x).

[Hint: If G is another function satisfying these conditions, g − G is entire.]


