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for all ξ < 0. Then, passing to the limit successively, one has f̂ε,0(ξ) = 0
for ξ < 0, and finally f̂ (ξ) = f̂0,0(ξ) = 0 for all ξ < 0.

Remark. The reader should note a certain analogy between the above
theorem and Theorem 7.1 in Chapter 3. Here we are dealing with a
function holomorphic in the upper half-plane, and there with a function
holomorphic in a disc. In the present case the Fourier transform vanishes
when ξ < 0, and in the earlier case, the Fourier coefficients vanish when
n < 0.

4 Exercises

1. Suppose f is continuous and of moderate decrease, and f̂(ξ) = 0 for all ξ ∈ R.
Show that f = 0 by completing the following outline:

(a) For each fixed real number t consider the two functions

A(z) =

∫ t

−∞
f(x)e−2πiz(x−t) dx and B(z) = −

∫ ∞

t

f(x)e−2πiz(x−t) dx.

Show that A(ξ) = B(ξ) for all ξ ∈ R.

(b) Prove that the function F equal to A in the closed upper half-plane, and B
in the lower half-plane, is entire and bounded, thus constant. In fact, show
that F = 0.

(c) Deduce that

∫ t

−∞
f(x) dx = 0,

for all t, and conclude that f = 0.

2. If f ∈ Fa with a > 0, then for any positive integer n one has f (n) ∈ Fb whenever
0 ≤ b < a.

[Hint: Modify the solution to Exercise 8 in Chapter 2.]

3. Show, by contour integration, that if a > 0 and ξ ∈ R then

1
π

∫ ∞

−∞

a
a2 + x2

e−2πixξ dx = e−2πa|ξ|,

and check that
∫ ∞

−∞
e−2πa|ξ|e2πiξx dξ =

1
π

a
a2 + x2

.
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4. Suppose Q is a polynomial of degree ≥ 2 with distinct roots, none lying on the
real axis. Calculate

∫ ∞

−∞

e−2πixξ

Q(x)
dx, ξ ∈ R

in terms of the roots of Q. What happens when several roots coincide?

[Hint: Consider separately the cases ξ < 0, ξ = 0, and ξ > 0. Use residues.]

5. More generally, let R(x) = P (x)/Q(x) be a rational function with (degree Q) ≥
(degreeP )+2 and Q(x) #= 0 on the real axis.

(a) Prove that if α1, . . . ,αk are the roots of R in the upper half-plane, then
there exists polynomials Pj(ξ) of degree less than the multiplicity of αj so
that

∫ ∞

−∞
R(x)e−2πixξ dx =

k∑

j=1

Pj(ξ)e
−2πiαjξ, when ξ < 0.

(b) In particular, if Q(z) has no zeros in the upper half-plane, then∫∞
−∞ R(x)e−2πixξ dx = 0 for ξ < 0.

(c) Show that similar results hold in the case ξ > 0.

(d) Show that

∫ ∞

−∞
R(x)e−2πixξ dx = O(e−a|ξ|), ξ ∈ R

as |ξ| → ∞ for some a > 0. Determine the best possible a’s in terms of the
roots of R.

[Hint: For part (a), use residues. The powers of ξ appear when one differentiates
the function f(z) = R(z)e−2πizξ (as in the formula of Theorem 1.4 in the previous
chapter). For part (c) argue in the lower half-plane.]

6. Prove that

1
π

∞∑

n=−∞

a
a2 + n2

=
∞∑

n=−∞
e−2πa|n|

whenever a > 0. Hence show that the sum equals coth πa.

7. The Poisson summation formula applied to specific examples often provides
interesting identities.

(a) Let τ be fixed with Im(τ ) > 0. Apply the Poisson summation formula to

f(z) = (τ + z)−k ,



4. Exercises 129

where k is an integer ≥ 2, to obtain

∞∑

n=−∞

1
(τ + n)k

=
(−2πi)k

(k − 1)!

∞∑

m=1

mk−1e2πimτ .

(b) Set k = 2 in the above formula to show that if Im(τ ) > 0, then

∞∑

n=−∞

1
(τ + n)2

=
π2

sin2(πτ )
.

(c) Can one conclude that the above formula holds true whenever τ is any
complex number that is not an integer?

[Hint: For (a), use residues to prove that f̂(ξ) = 0, if ξ < 0, and

f̂(ξ) =
(−2πi)k

(k − 1)!
ξk−1e2πiξτ , when ξ > 0.]

8. Suppose f̂ has compact support contained in [−M, M ] and let f(z) =
∑∞

n=0 anzn.
Show that

an =
(2πi)n

n!

∫ M

−M

f̂(ξ)ξn dξ,

and as a result

lim sup
n→∞

(n!|an|)1/n ≤ 2πM.

In the converse direction, let f be any power series f(z) =
∑∞

n=0 anzn with

lim supn→∞(n!|an|)1/n ≤ 2πM . Then, f is holomorphic in the complex plane,
and for every ε > 0 there exists Aε > 0 such that

|f(z)| ≤ Aεe
2π(M+ε)|z|.

9. Here are further results similar to the Phragmén-Lindelöf theorem.

(a) Let F be a holomorphic function in the right half-plane that extends continu-
ously to the boundary, that is, the imaginary axis. Suppose that |F (iy)| ≤ 1
for all y ∈ R, and

|F (z)| ≤ Cec|z|γ

for some c, C > 0 and γ < 1. Prove that |F (z)| ≤ 1 for all z in the right
half-plane.
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(b) More generally, let S be a sector whose vertex is the origin, and forming an
angle of π/β. Let F be a holomorphic function in S that is continuous on
the closure of S, so that |F (z)| ≤ 1 on the boundary of S and

|F (z)| ≤ Cec|z|α for all z ∈ S

for some c, C > 0 and 0 < α < β. Prove that |F (z)| ≤ 1 for all z ∈ S.

10. This exercise generalizes some of the properties of e−πx2
related to the fact

that it is its own Fourier transform.
Suppose f(z) is an entire function that satisfies

|f(x + iy)| ≤ ce−ax2+by2

for some a, b, c > 0. Let

f̂(ζ) =

∫ ∞

−∞
f(x)e−2πixζ dx.

Then, f̂ is an entire function of ζ that satisfies

|f̂(ξ + iη)| ≤ c′e−a′ξ2+b′η2

for some a′, b′, c′ > 0.

[Hint: To prove f̂(ξ) = O(e−a′ξ2
), assume ξ > 0 and change the contour of inte-

gration to x − iy for some y > 0 fixed, and −∞ < x < ∞. Then

f̂(ξ) = O(e−2πyξeby2
).

Finally, choose y = dξ where d is a small constant.]

11. One can give a neater formulation of the result in Exercise 10 by proving the
following fact.

Suppose f(z) is an entire function of strict order 2, that is,

f(z) = O(ec1|z|2)

for some c1 > 0. Suppose also that for x real,

f(x) = O(e−c2|x|2)

for some c2 > 0. Then

|f(x + iy)| = O(e−ax2+by2
)

for some a, b > 0. The converse is obviously true.
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12. The principle that a function and its Fourier transform cannot both be too
small at infinity is illustrated by the following theorem of Hardy.

If f is a function on R that satisfies

f(x) = O(e−πx2
) and f̂(ξ) = O(e−πξ2

),

then f is a constant multiple of e−πx2
. As a result, if f(x) = O(e−πAx2

), and

f̂(ξ) = O(e−πBξ2
), with AB > 1 and A,B > 0, then f is identically zero.

(a) If f is even, show that f̂ extends to an even entire function. Moreover, if
g(z) = f̂(z1/2), then g satisfies

|g(x)| ≤ ce−πx and |g(z)| ≤ ceπR sin2(θ/2) ≤ ceπ|z|

when x ∈ R and z = Reiθ with R ≥ 0 and θ ∈ R.

(b) Apply the Phragmén-Lindelöf principle to the function

F (z) = g(z)eγz where γ = iπ
e−iπ/(2β)

sin π/(2β)

and the sector 0 ≤ θ ≤ π/β < π, and let β → π to deduce that eπzg(z) is
bounded in the closed upper half-plane. The same result holds in the lower
half-plane, so by Liouville’s theorem eπzg(z) is constant, as desired.

(c) If f is odd, then f̂(0) = 0, and apply the above argument to f̂(z)/z to deduce
that f = f̂ = 0. Finally, write an arbitrary f as an appropriate sum of an
even function and an odd function.

5 Problems

1. Suppose f̂(ξ) = O(e−a|ξ|p ) as |ξ| → ∞, for some p > 1. Then f is holomorphic
for all z and satisfies the growth condition

|f(z)| ≤ Aea|z|q

where 1/p + 1/q = 1.
Note that on the one hand, when p → ∞ then q → 1, and this limiting case

can be interpreted as part of Theorem 3.3. On the other hand, when p → 1 then
q → ∞, and this limiting case in a sense brings us back to Theorem 2.1.

[Hint: To prove the result, use the inequality −ξp + ξu ≤ uq, which is valid when
ξ and u are non-negative. To establish this inequality, examine separately the
cases ξp ≥ ξu and ξp < ξu; note also that the functions ξ = uq−1 and u = ξp−1 are
inverses of each other because (p − 1)(q − 1) = 1.]
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2. The problem is to solve the differential equation

an
dn

dtn
u(t) + an−1

dn−1

dtn−1
u(t) + · · · + a0u(t) = f(t) ,

where a0, a1, . . . , an are complex constants, and f is a given function. Here we
suppose that f has bounded support and is smooth (say of class C2).

(a) Let

f̂(z) =

∫ ∞

−∞
f(t)e−2πizt dt.

Observe that f̂ is an entire function, and using integration by parts show
that

|f̂(x + iy)| ≤ A
1 + x2

if |y| ≤ a for any fixed a ≥ 0.

(b) Write

P (z) = an(2πiz)n + an−1(2πiz)n−1 + · · · + a0.

Find a real number c so that P (z) does not vanish on the line

L = {z : z = x + ic, x ∈ R}.

(c) Set

u(t) =

∫

L

e2πizt

P (z)
f̂(z) dz.

Check that

n∑

j=0

aj

(
d
dt

)j

u(t) =

∫

L

e2πiztf̂(z) dz

and
∫

L

e2πiztf̂(z) dz =

∫ ∞

−∞
e2πixtf̂(x) dx.

Conclude by the Fourier inversion theorem that

n∑

j=0

aj

(
d
dt

)j

u(t) = f(t).
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Note that the solution u depends on the choice c.

3.∗ In this problem, we investigate the behavior of certain bounded holomorphic
functions in an infinite strip. The particular result described here is sometimes
called the three-lines lemma.

(a) Suppose F (z) is holomorphic and bounded in the strip 0 < Im(z) < 1 and
continuous on its closure. If |F (z)| ≤ 1 on the boundary lines, then
|F (z)| ≤ 1 throughout the strip.

(b) For the more general F , let supx∈R |F (x)| = M0 and supx∈R |F (x + i)| =
M1. Then,

sup
x∈R

|F (x + iy)| ≤ M1−y
0 My

1 , if 0 ≤ y ≤ 1.

(c) As a consequence, prove that log supx∈R |F (x + iy)| is a convex function of
y when 0 ≤ y ≤ 1.

[Hint: For part (a), apply the maximum modulus principle to Fε(z) = F (z)e−εz2
.

For part (b), consider Mz−1
0 M−z

1 F (z).]

4.∗ There is a relation between the Paley-Wiener theorem and an earlier represen-
tation due to E. Borel.

(a) A function f(z), holomorphic for all z, satisfies |f(z)| ≤ Aεe2π(M+ε)|z| for
all ε if and only if it is representable in the form

f(z) =

∫

C

e2πizwg(w) dw

where g is holomorphic outside the circle of radius M centered at the origin,
and g vanishes at infinity. Here C is any circle centered at the origin of radius
larger than M . In fact, if f(z) =

∑
anzn, then g(w) =

∑∞
n=0 Anw−n−1 with

an = An(2πi)n+1/n!.

(b) The connection with Theorem 3.3 is as follows. For these functions f (for
which in addition f and f̂ are of moderate decrease on the real axis), one can
assert that the g above is holomorphic in the larger region, which consists
of the slit plane C − [−M, M ]. Moreover, the relation between g and the
Fourier transform f̂ is

g(z) =
1

2πi

∫ M

−M

f̂(ξ)
ξ − z

dξ

so that f̂ represents the jump of g across the segment [−M, M ]; that is,

f̂(x) = lim
ε→0,ε>0

g(x + iε) − g(x − iε).

See Problem 5 in Chapter 3.


