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Proof. Fix a point w0 ∈ Ω. It suffices to show that f(w) = f(w0) for
all w ∈ Ω.

Since Ω is connected, for any w ∈ Ω, there exists a curve γ which joins
w0 to w. Since f is clearly a primitive for f ′, we have

∫

γ

f ′(z) dz = f(w) − f(w0).

By assumption, f ′ = 0 so the integral on the left is 0, and we conclude
that f(w) = f(w0) as desired.

Remark on notation. When convenient, we follow the practice of using
the notation f(z) = O(g(z)) to mean that there is a constant C > 0 such
that |f(z)| ≤ C|g(z)| for z in a neighborhood of the point in question.
In addition, we say f(z) = o(g(z)) when |f(z)/g(z)| → 0. We also write
f(z) ∼ g(z) to mean that f(z)/g(z) → 1.

4 Exercises

1. Describe geometrically the sets of points z in the complex plane defined by the
following relations:

(a) |z − z1| = |z − z2| where z1, z2 ∈ C.

(b) 1/z = z.

(c) Re(z) = 3.

(d) Re(z) > c, (resp., ≥ c) where c ∈ R.

(e) Re(az + b) > 0 where a, b ∈ C.

(f) |z| = Re(z) + 1.

(g) Im(z) = c with c ∈ R.

2. Let 〈·, ·〉 denote the usual inner product in R2. In other words, if Z = (x1, y1)
and W = (x2, y2), then

〈Z, W 〉 = x1x2 + y1y2.

Similarly, we may define a Hermitian inner product (·, ·) in C by

(z, w) = zw.
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The term Hermitian is used to describe the fact that (·, ·) is not symmetric, but
rather satisfies the relation

(z, w) = (w, z) for all z, w ∈ C.

Show that

〈z, w〉 =
1
2
[(z, w) + (w, z)] = Re(z, w),

where we use the usual identification z = x + iy ∈ C with (x, y) ∈ R2.

3. With ω = seiϕ, where s ≥ 0 and ϕ ∈ R, solve the equation zn = ω in C where
n is a natural number. How many solutions are there?

4. Show that it is impossible to define a total ordering on C. In other words, one
cannot find a relation & between complex numbers so that:

(i) For any two complex numbers z, w, one and only one of the following is true:
z & w, w & z or z = w.

(ii) For all z1, z2, z3 ∈ C the relation z1 & z2 implies z1 + z3 & z2 + z3.

(iii) Moreover, for all z1, z2, z3 ∈ C with z3 & 0, then z1 & z2 implies z1z3 & z2z3.

[Hint: First check if i & 0 is possible.]

5. A set Ω is said to be pathwise connected if any two points in Ω can be
joined by a (piecewise-smooth) curve entirely contained in Ω. The purpose of this
exercise is to prove that an open set Ω is pathwise connected if and only if Ω is
connected.

(a) Suppose first that Ω is open and pathwise connected, and that it can be
written as Ω = Ω1 ∪ Ω2 where Ω1 and Ω2 are disjoint non-empty open sets.
Choose two points w1 ∈ Ω1 and w2 ∈ Ω2 and let γ denote a curve in Ω
joining w1 to w2. Consider a parametrization z : [0, 1] → Ω of this curve
with z(0) = w1 and z(1) = w2, and let

t∗ = sup
0≤t≤1

{t : z(s) ∈ Ω1 for all 0 ≤ s < t}.

Arrive at a contradiction by considering the point z(t∗).

(b) Conversely, suppose that Ω is open and connected. Fix a point w ∈ Ω and
let Ω1 ⊂ Ω denote the set of all points that can be joined to w by a curve
contained in Ω. Also, let Ω2 ⊂ Ω denote the set of all points that cannot be
joined to w by a curve in Ω. Prove that both Ω1 and Ω2 are open, disjoint
and their union is Ω. Finally, since Ω1 is non-empty (why?) conclude that
Ω = Ω1 as desired.
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The proof actually shows that the regularity and type of curves we used to define
pathwise connectedness can be relaxed without changing the equivalence between
the two definitions when Ω is open. For instance, we may take all curves to be
continuous, or simply polygonal lines.2

6. Let Ω be an open set in C and z ∈ Ω. The connected component (or simply
the component) of Ω containing z is the set Cz of all points w in Ω that can be
joined to z by a curve entirely contained in Ω.

(a) Check first that Cz is open and connected. Then, show that w ∈ Cz defines
an equivalence relation, that is: (i) z ∈ Cz, (ii) w ∈ Cz implies z ∈ Cw, and
(iii) if w ∈ Cz and z ∈ Cζ , then w ∈ Cζ .

Thus Ω is the union of all its connected components, and two components
are either disjoint or coincide.

(b) Show that Ω can have only countably many distinct connected components.

(c) Prove that if Ω is the complement of a compact set, then Ω has only one
unbounded component.

[Hint: For (b), one would otherwise obtain an uncountable number of disjoint open
balls. Now, each ball contains a point with rational coordinates. For (c), note that
the complement of a large disc containing the compact set is connected.]

7. The family of mappings introduced here plays an important role in complex
analysis. These mappings, sometimes called Blaschke factors, will reappear in
various applications in later chapters.

(a) Let z, w be two complex numbers such that zw += 1. Prove that

∣∣∣∣
w − z
1 − wz

∣∣∣∣ < 1 if |z| < 1 and |w| < 1,

and also that
∣∣∣∣

w − z
1 − wz

∣∣∣∣ = 1 if |z| = 1 or |w| = 1.

[Hint: Why can one assume that z is real? It then suffices to prove that

(r − w)(r − w) ≤ (1 − rw)(1 − rw)

with equality for appropriate r and |w|.]

(b) Prove that for a fixed w in the unit disc D, the mapping

F : z ,→ w − z
1 − wz

satisfies the following conditions:

2A polygonal line is a piecewise-smooth curve which consists of finitely many straight
line segments.
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(i) F maps the unit disc to itself (that is, F : D → D), and is holomorphic.

(ii) F interchanges 0 and w, namely F (0) = w and F (w) = 0.

(iii) |F (z)| = 1 if |z| = 1.

(iv) F : D → D is bijective. [Hint: Calculate F ◦ F .]

8. Suppose U and V are open sets in the complex plane. Prove that if f : U → V
and g : V → C are two functions that are differentiable (in the real sense, that is,
as functions of the two real variables x and y), and h = g ◦ f , then

∂h
∂z

=
∂g
∂z

∂f
∂z

+
∂g
∂z

∂f
∂z

and

∂h
∂z

=
∂g
∂z

∂f
∂z

+
∂g
∂z

∂f
∂z

.

This is the complex version of the chain rule.

9. Show that in polar coordinates, the Cauchy-Riemann equations take the form

∂u
∂r

=
1
r
∂v
∂θ

and
1
r
∂u
∂θ

= −∂v
∂r

.

Use these equations to show that the logarithm function defined by

log z = log r + iθ where z = reiθ with −π < θ < π

is holomorphic in the region r > 0 and −π < θ < π.

10. Show that

4
∂
∂z

∂
∂z

= 4
∂
∂z

∂
∂z

= . ,

where . is the Laplacian

. =
∂2

∂x2
+

∂2

∂y2
.

11. Use Exercise 10 to prove that if f is holomorphic in the open set Ω, then the
real and imaginary parts of f are harmonic; that is, their Laplacian is zero.

12. Consider the function defined by

f(x + iy) =
√

|x||y|, whenever x, y ∈ R.
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Show that f satisfies the Cauchy-Riemann equations at the origin, yet f is not
holomorphic at 0.

13. Suppose that f is holomorphic in an open set Ω. Prove that in any one of the
following cases:

(a) Re(f) is constant;

(b) Im(f) is constant;

(c) |f | is constant;

one can conclude that f is constant.

14. Suppose {an}N
n=1 and {bn}N

n=1 are two finite sequences of complex numbers.
Let Bk =

∑k
n=1 bn denote the partial sums of the series

∑
bn with the convention

B0 = 0. Prove the summation by parts formula

N∑

n=M

anbn = aNBN − aMBM−1 −
N−1∑

n=M

(an+1 − an)Bn.

15. Abel’s theorem. Suppose
∑∞

n=1 an converges. Prove that

lim
r→1, r<1

∞∑

n=1

rnan =
∞∑

n=1

an.

[Hint: Sum by parts.] In other words, if a series converges, then it is Abel summable
with the same limit. For the precise definition of these terms, and more information
on summability methods, we refer the reader to Book I, Chapter 2.

16. Determine the radius of convergence of the series
∑∞

n=1 anzn when:

(a) an = (log n)2

(b) an = n!

(c) an = n2

4n+3n

(d) an = (n!)3/(3n)! [Hint: Use Stirling’s formula, which says that

n! ∼ cnn+ 1
2 e−n for some c > 0..]

(e) Find the radius of convergence of the hypergeometric series

F (α,β, γ; z) = 1 +
∞∑

n=1

α(α+ 1) · · · (α+ n − 1)β(β + 1) · · · (β + n − 1)
n!γ(γ + 1) · · · (γ + n − 1)

zn.

Here α,β ∈ C and γ += 0,−1,−2, . . ..

Peng Zhou
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(f) Find the radius of convergence of the Bessel function of order r:

Jr(z) =
( z

2

)r
∞∑

n=0

(−1)n

n!(n + r)!

( z
2

)2n
,

where r is a positive integer.

17. Show that if {an}∞n=0 is a sequence of non-zero complex numbers such that

lim
n→∞

|an+1|
|an|

= L,

then

lim
n→∞

|an|1/n = L.

In particular, this exercise shows that when applicable, the ratio test can be used
to calculate the radius of convergence of a power series.

18. Let f be a power series centered at the origin. Prove that f has a power series
expansion around any point in its disc of convergence.

[Hint: Write z = z0 + (z − z0) and use the binomial expansion for zn.]

19. Prove the following:

(a) The power series
∑

nzn does not converge on any point of the unit circle.

(b) The power series
∑

zn/n2 converges at every point of the unit circle.

(c) The power series
∑

zn/n converges at every point of the unit circle except
z = 1. [Hint: Sum by parts.]

20. Expand (1 − z)−m in powers of z. Here m is a fixed positive integer. Also,
show that if

(1 − z)−m =
∞∑

n=0

anzn,

then one obtains the following asymptotic relation for the coefficients:

an ∼ 1
(m − 1)!

nm−1 as n → ∞.

21. Show that for |z| < 1, one has

z
1 − z2

+
z2

1 − z4
+ · · · + z2n

1 − z2n+1 + · · · =
z

1 − z
,

Peng Zhou
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and

z
1 + z

+
2z2

1 + z2
+ · · · + 2kz2k

1 + z2k + · · · =
z

1 − z
.

Justify any change in the order of summation.

[Hint: Use the dyadic expansion of an integer and the fact that 2k+1 − 1 = 1 +
2 + 22 + · · · + 2k.]

22. Let N = {1, 2, 3, . . .} denote the set of positive integers. A subset S ⊂ N is
said to be in arithmetic progression if

S = {a, a + d, a + 2d, a + 3d, . . .}

where a, d ∈ N. Here d is called the step of S.
Show that N cannot be partitioned into a finite number of subsets that are in

arithmetic progression with distinct steps (except for the trivial case a = d = 1).

[Hint: Write
∑

n∈N zn as a sum of terms of the type za

1−zd .]

23. Consider the function f defined on R by

f(x) =

{
0 if x ≤ 0 ,

e−1/x2
if x > 0.

Prove that f is indefinitely differentiable on R, and that f (n)(0) = 0 for all n ≥ 1.
Conclude that f does not have a converging power series expansion

∑∞
n=0 anxn

for x near the origin.

24. Let γ be a smooth curve in C parametrized by z(t) : [a, b] → C. Let γ− denote
the curve with the same image as γ but with the reverse orientation. Prove that
for any continuous function f on γ

∫

γ

f(z) dz = −
∫

γ−
f(z) dz.

25. The next three calculations provide some insight into Cauchy’s theorem, which
we treat in the next chapter.

(a) Evaluate the integrals

∫

γ

zn dz

for all integers n. Here γ is any circle centered at the origin with the positive
(counterclockwise) orientation.

(b) Same question as before, but with γ any circle not containing the origin.

Peng Zhou
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(c) Show that if |a| < r < |b|, then

∫

γ

1
(z − a)(z − b)

dz =
2πi

a − b
,

where γ denotes the circle centered at the origin, of radius r, with the
positive orientation.

26. Suppose f is continuous in a region Ω. Prove that any two primitives of f (if
they exist) differ by a constant.


