Name:

\qquad

- You have 3 hours to complete the exam.
- Please provides all intermediate steps for calculation problems and justifictions for proof based problems.

Good Luck!

Question	Points	Score
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
8	10	
9	10	
10	10	
Total	100	

We use $\mathbb{D}=\{z:|z|<1\}$ for the open unit disk, $C=\partial \mathbb{D}$ for its boundary, i.e the unit circle, and $\widehat{\mathbb{C}}$ for the extended complex plane $\mathbb{C} \cup\{\infty\}$.

1. (10 points, 2 points each) True or False (pt). Please provide your reasoning (pt).
(1) If f is a bounded holomorphic function on the punctured disk $\mathbb{D} \backslash\{0\}$ then f can be extended to a holomorphic function on \mathbb{D}.
(2) Let $f(z)$ be an entire function. If $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ for all $z \in \mathbb{D}$, then the equality holds for all $z \in \mathbb{C}$.
(3) Let $f(z)$ be a holomorphic function on \mathbb{C}, and let $g(z)=\int_{0}^{1} f(z+x) d x$. Then $g(z)$ is a holomorphic function.
(4) Let $f(z)$ be a holomorphic function on \mathbb{C}, and let $g(z)=\int_{0}^{1} f(z+x) d x$. If $g(z)=0$ for all z, then $f(z)$ has to be 0 .
(5) Let $f(z)$ be a holomorphic function on \mathbb{C}. Suppose $f(z) \in \mathbb{R}$ for all $z \in \mathbb{R}$, then $f(\bar{z})=\overline{f(z)}$ for all $z \in \mathbb{C}$.
2. (10 points) Given that $\sin (z)=\left(e^{i z}-e^{-i z}\right) /(2 i)$ and $\cos (z)=\left(e^{i z}+e^{-i z}\right) / 2$ are holomorphic functions on \mathbb{C}, and that for all $x \in \mathbb{R}$, we have $\sin ^{2}(x)+$ $\cos ^{2}(x)=1$. Prove that for all $z \in \mathbb{C}$, we have $\sin ^{2}(z)+\cos ^{2}(z)=1$.
either direct check,
or
say if $f=g$
on \mathbb{R},
and
let $u=z-5$, then $z=u+5 . \quad \frac{1}{z-1}=\frac{1}{u+5-1}=\frac{1}{4+4}$
3. (10 points) Compute the first 3 terms of the Taylor expansion of $1 /(z-1)=\frac{1}{4} \frac{1}{1+4 / 4}$ at $z=5$. What is its the radius of convergence? $R=4=\operatorname{distame}$ between $=\frac{1}{4}\left(1-\frac{u}{4}+\frac{u^{2}}{4^{2}}\right)$
(10 points) Compute the first 3 terms of the Laurent expansion of $e^{z} 9 z^{2}$ at $\frac{e^{2}}{z^{2}}=\frac{1}{z^{2}}\left(1+z+\frac{z^{2}}{2+\cdot \cdot} 4\right.$. (10 points) Compute the first 3 ter

$$
=\frac{1}{z^{2}}+\frac{1}{z}+\frac{1}{2}+\cdots
$$

$$
\begin{array}{r}
\oint_{|z|=1} e^{z} / z^{2} d z . \quad=2 \pi i \cdot \operatorname{Res}\left(\frac{e^{z}}{z^{2}}\right)=\frac{1}{4}-\frac{u^{2}}{16}+\frac{u^{2}}{64} . \\
=2=0
\end{array}
$$

5. (10 points) Given any complex number $a \in \mathbb{C}$ with $\operatorname{Re}(a)>0$, compute the integral

$$
I_{a}=\int_{0}^{\infty} \frac{a}{1+(a x)^{2}} d x
$$

say $z=a x, \quad a=e^{i \theta} \cdot r$

$$
\int_{0}^{e^{i \theta} \infty} \frac{1}{1+z^{2}} d z=\int_{0}^{\infty} \frac{1}{1+z^{2}} d z
$$

$\Leftrightarrow z-\frac{1}{2}=2-z$

$$
\Leftrightarrow 2 z=\frac{5}{2}
$$

6. (10 points) For any $a \in \mathbb{D}$, let $B_{a}(z)=(z-a) /(1-\bar{a} z)$. Find a point $z \in \mathbb{C}$, such that $B_{1 / 2}(z)=2(5 \mathrm{pt})$. Find a point $b \in \mathbb{C}$, such that $B_{1 / 2}(z) \neq b$ for $=\frac{1}{2} \int_{-\infty}^{+\infty} \frac{1}{1+z^{2}} d z$
any $z \in \mathbb{C}$. a
7. (10 points) Let $f(z)$ be a holomorphic function on \mathbb{D}. Suppose we $\operatorname{Re}(f)=\operatorname{Im}(f)$ on \mathbb{D}, prove that f has to be a constant function.

Cawhy: Riemann.
8. (10 points) Prove that for all positive integer n, we have

$$
\frac{1}{2 \pi i} \oint_{|z|=n+1 / 2} \frac{\cos (z)}{\sin (z)} d z=2 n+1 \quad \oint \frac{f^{\prime} d z}{f} \text { ty. }
$$

$$
=\frac{1}{2} \cdot \frac{2 \pi i}{2 i}
$$

9. (10 points) Find a holomorphic function $f(z)$ on the right half plane $\{z \mid$

$$
=\frac{\pi}{2}
$$ $\operatorname{Re}(z)>0\}$, such that $f(z)=0$ exactly when $z=1 / n$, where $n=1,2,3 \cdots$ $\begin{array}{lll}\text { (meaning } f(z) \text { is nonzero elsewhere). egg. } \sin (\pi / z) . ~ p o r, l e t \\ \text {) } & =\frac{1}{2} \text {, }\end{array}$

10. (10 points) If f is a holomorphic function on \mathbb{C}, such that $f(z)=f(z+1)$ we want for all z, then prove that for any $a \in \mathbb{C}$, the integral $I_{a}=\int_{x=0}^{1} f(a+x) d x$ is zero at $u=\boldsymbol{n}$, a constant (independent of a).

Ia hol'c, and.

$$
\begin{aligned}
\frac{d}{d a} I_{a} & =\int_{0}^{1} f^{\prime}(a+x) d x \\
& =f(a+1)-f(a) \\
& =0
\end{aligned}
$$

