- You have 3 hours to complete the exam.
- Please provides all intermediate steps for calculation problems and justifications for proof based problems.

Good Luck!

Question	Points	Score
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
8	10	
9	10	
10	10	
Total	100	

We use $\mathbb{D} = \{z : |z| < 1\}$ for the open unit disk, $C = \partial \mathbb{D}$ for its boundary, i.e the unit circle, and \mathbb{C} for the extended complex plane $\mathbb{C} \cup \{\infty\}$.

- 1. (10 points, 2 points each) True or False (1pt). Please provide your reasoning(1pt).
 - (1) If f is a bounded holomorphic function on the punctured disk $\mathbb{D}\setminus\{0\}$ then f can be extended to a holomorphic function on \mathbb{D} .
 - (2) Let f(z) be an entire function. If $f(z) = \sum_{n=0}^{\infty} a_n z^n$ for all $z \in \mathbb{D}$, then the equality holds for all $z \in \mathbb{C}$.
 - (3) Let f(z) be a holomorphic function on \mathbb{C} , and let $g(z) = \int_0^1 f(z+x) dx$. Then g(z) is a holomorphic function.
 - (4) Let f(z) be a holomorphic function on \mathbb{C} , and let $g(z) = \int_0^1 f(z+x) dx$. If g(z) = 0 for all z, then f(z) has to be 0.

fiz) =e atiz

- (5) Let f(z) be a holomorphic function on \mathbb{C} . Suppose $f(z) \in \mathbb{R}$ for all $z \in \mathbb{R}$, then $f(\overline{z}) = \overline{f(z)}$ for all $z \in \mathbb{C}$.
- 2. (10 points) Given that $\sin(z) = (e^{iz} e^{-iz})/(2i)$ and $\cos(z) = (e^{iz} + e^{-iz})/2$ are holomorphic functions on \mathbb{C} , and that for all $x \in \mathbb{R}$, we have $\sin^2(x) +$ $\cos^2(x) = 1$. Prove that for all $z \in \mathbb{C}$, we have $\sin^2(z) + \cos^2(z) = 1$.

either direct check, or say if
$$f=g$$
 on \mathbb{R}_1 and g hol'C, then $f=g$ on \mathbb{C}

True True True False

True

f,

-

L

2

D

=