product expansion for the sine function,

$$
\begin{equation*}
\sin (\pi z)=\pi z \prod_{k=1}^{\infty}\left(1-\frac{z^{2}}{k^{2}}\right)=\pi z\left(1-z^{2}\right)\left(1-\frac{z^{2}}{4}\right) \cdots \tag{3.3}
\end{equation*}
$$

Exercises for XIII. 3

1. Evaluate the following.
(a) $\prod_{n=1}^{\infty}\left(1+\frac{1}{n(n+2)}\right)$
(b) $\prod_{n=2}^{\infty}\left(1-\frac{1}{n^{2}}\right)$
(c) $\prod_{n=3}^{\infty}\left(\frac{n^{2}-1}{n^{2}-4}\right)$
2. Define $a_{k}=-\frac{1}{\sqrt{k}}$ if k is odd, and $a_{k}=\frac{1}{\sqrt{k}}+\frac{1}{k}+\frac{1}{k \sqrt{k}}$ if k is even. Show that $\Pi\left(1+a_{k}\right)$ converges, while $\sum a_{k}$ and $\sum a_{k}^{2}$ diverge.
3. Show that if $t_{j} \geq 0$, then $\Pi\left(1+t_{j}\right) \leq \exp \left(\sum t_{j}\right)$.
4. Show that if $0<t_{j}<1$, then $\Pi\left(1-t_{j}\right)$ converges if and only if $\sum t_{j}$ converges.
5. Show that the infinite product $\Pi\left(1+a_{j}\right)$ converges if and only if there is $N \geq 1$ such that $\lim _{m \rightarrow \infty} \prod_{j=N}^{m}\left(1+a_{j}\right)$ exists and is nonzero.
6. Show that $\prod\left(1+a_{j}\right)$ converges if and only if $\prod_{j=m}^{n}\left(1+a_{j}\right) \rightarrow 1$ as $m, n \rightarrow \infty$. Hint. Take logarithms and invoke the Cauchy criterion for series.
7. Show that if $\Pi\left(1+a_{k}\right)$ converges, then $\prod\left|1+a_{k}\right|$ converges.
8. Suppose $a_{k} \rightarrow 0$. Show that the series $\sum a_{k}$ converges absolutely if and only if both the series $\sum \operatorname{Arg}\left(1+a_{k}\right)$ and $\sum \log \left|1+a_{k}\right|$ converge absolutely.
9. Show that $\prod_{n=1}^{\infty}\left(1+\frac{1}{n^{2}}\right)=\frac{e^{\pi}-e^{-\pi}}{2 \pi}$.
10. Show that $\prod_{n=0}^{\infty}\left(1+z^{2^{n}}\right)=\frac{1}{1-z}$ for $|z|<1$.
11. Show that if $p_{k}(z)$ is a polynomial of degree k such that $p_{k}(0)=1$ and $p_{k}(z)$ has no zeros in the disk $\left\{|z| \leq k^{3}\right\}$, then $\prod p_{k}(z)$ converges normally.
12. Establish one of the following formulae, and deduce from it the other using logarithmic differentiation:

$$
\begin{aligned}
& e^{z}-1=z e^{z / 2} \prod_{k=1}^{\infty}\left(1+\frac{z^{2}}{4 \pi^{2} k^{2}}\right) \\
& \frac{1}{e^{z}-1}=\frac{1}{z}-\frac{1}{2}+2 z \sum_{k=1}^{\infty} \frac{1}{z^{2}+4 \pi^{2} k^{2}}
\end{aligned}
$$

13. Use the infinite product expansion for $\sin (\pi z)$ to show that the Wallis product
$\prod_{k=1}^{\infty} \frac{(2 k)^{2}}{(2 k-1)(2 k+1)}=\lim _{n \rightarrow \infty} \frac{2 \cdot 2 \cdot 4 \cdot 4 \cdot 6 \cdot 6}{1 \cdot 3 \cdot 3 \cdot 5 \cdot 5 \cdot 7} \cdots \frac{(2 n) \cdot(2 n)}{(2 n-1) \cdot(2 n+1)}$
converges to $\pi / 2$. Use this to show that

$$
\lim _{n \rightarrow \infty} \frac{[n!]^{2}}{(2 n)!} \frac{2^{2 n}}{\sqrt{n}}=\sqrt{\pi}
$$

14. Show that if $t>0$, then $\prod_{-m \leq k \leq t m}\left(1+\frac{z}{k}\right)$ converges to $\frac{\sin (\pi z)}{\pi z} t^{z}$ as $m \rightarrow \infty$.
15. Show that $\frac{1}{z} \prod_{n=1}^{\infty} \frac{n}{z+n}\left(\frac{n+1}{n}\right)^{z}$ converges to a meromorphic function $\Gamma(z)$ whose poles are simple poles at 0 and the negative integers. Show that

$$
\Gamma(z)=\lim _{m \rightarrow \infty} \frac{(m-1)!m^{z}}{z(z+1) \cdots(z+m-1)}
$$

Show that $\Gamma(z+1)=z \Gamma(z)$. Show that $\Gamma(n+1)=n$! for positive integers n. Remark. The function $\Gamma(z)$ is called the gamma function. It was first introduced by Euler, who defined it to be the limit above. We will give an equivalent definition in the next chapter.
16. Let α_{k} be a sequence of complex numbers, with possible repetitions, such that $\left|\alpha_{k}\right|<1$ and $\left|\alpha_{k}\right| \rightarrow 1$, and consider the infinite Blaschke product defined by

$$
B(z)=\prod \frac{\overline{\alpha_{k}}}{\left|\alpha_{k}\right|} \frac{\alpha_{k}-z}{1-\overline{\alpha_{k}} z}
$$

where the factors corresponding to $\alpha_{k}=0$ are z.
(a) Suppose that $\sum\left(1-\left|\alpha_{k}\right|\right)<\infty$. Let E be the set of accumulation points on the unit circle $\partial \mathbb{D}$ of the α_{k} 's. Show that the infinite product converges normally on $\mathbb{C}^{*} \backslash E$ to a meromorphic
function $B(z)$, with the following properties: $|B(z)|<1$ for $z \in \mathbb{D},|B(z)|=1$ for $z \in \partial \mathbb{D} \backslash E$, and $B(z)$ has zeros precisely at the points α_{k}.
(b) Show that if $\sum\left(1-\left|\alpha_{k}\right|\right)=+\infty$, then the partial products converge uniformly on compact subsets of \mathbb{D} to 0 .
(c) Suppose that $f(z)$ is a bounded analytic function on \mathbb{D} that is not identically zero. Show that $f(z)$ has a factorization $f(z)=$ $B(z) g(z)$, where $B(z)$ is a (finite or infinite) Blaschke product, and $g(z)$ is a bounded analytic function on \mathbb{D} with no zeros. In particular, the zeros $\alpha_{1}, \alpha_{2}, \ldots$ of $f(z)$, repeated according to multiplicity, satisfy $\sum\left(1-\left|\alpha_{k}\right|\right)<+\infty$.

4. The Weierstrass Product Theorem

The Weierstrass product theorem is a companion theorem to the MittagLeffler theorem. The Mittag-Leffler theorem asserts that we can prescribe the poles and principal parts of a meromorphic function. The Weierstrass product theorem asserts that we can prescribe the zeros and poles of a meromorphic function together with their orders.

Recall that the order of a meromorphic function $f(z)$ at a point z_{0} is the order of the zero if $f\left(z_{0}\right)=0$, and it is minus the order of the pole if $f(z)$ has a pole at z_{0}. If z_{0} is neither a pole nor a zero of $f(z)$, the order of $f(z)$ at z_{0} is defined to be 0 .

Theorem (Weierstrass Product Theorem). Let D be a domain in the complex plane. Let $\left\{z_{k}\right\}$ be a sequence of distinct points of D with no accumulation point in D, and let $\left\{n_{k}\right\}$ be a sequence of integers (positive or negative). Then there is a meromorphic function $f(z)$ on D whose only zeros and poles are at the points z_{k}, such that the order of $f(z)$ at z_{k} is n_{k}.

The proof runs parallel to the proof of the Mittag-Leffler theorem. Let K_{m} be the set of $z \in D$ such that $|z| \leq m$ and the distance from z to ∂D is at least $1 / m$. Then K_{m} is a compact subset of $D, K_{m} \subset K_{m+1}$, and each component of $\mathbb{C}^{*} \backslash K_{m}$ contains a point of $\mathbb{C}^{*} \backslash D$. Suppose $z_{k} \in K_{m+1} \backslash K_{m}$. We connect z_{k} to a point $w_{k} \in C^{*} \backslash D$ by a simple curve γ_{k} in $\mathbb{C}^{*} \backslash K_{m}$. If $w_{k} \neq \infty$ we define $f_{k}(z)$ to be an analytic branch of $\log \left(\left(z-z_{k}\right) /\left(z-w_{k}\right)\right)$ in the simply connected domain $\mathbb{C}^{*} \backslash \gamma_{k}$. If $w_{k}=\infty$, we take $f_{k}(z)$ to be an analytic branch of $\log \left(1-z / z_{k}\right)$. By Runge's theorem, there is a rational function $g_{k}(z)$ with only pole at w_{k} such that $\left|f_{k}(z)-g_{k}(z)\right| \leq 2^{-k} / n_{k}$ on K_{m}. We consider the product

$$
f(z)=\prod_{k=1}^{\infty}\left(\frac{z-z_{k}}{z-w_{k}}\right)^{n_{k}} e^{-n_{k} g_{k}(z)}
$$

