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product expansion for the sine function,

(3.3)  sin(mz) = WZE(I—Z—E) = 7z (1 - 2% (1—f;>---.

Exercises for XIIIL.3
1. Evaluate the following.
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n=3
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2. Define ai = _\_/—E if kis odd, and a; = %—F%—l—k—l—ﬁ

Show that [](1 +ax) converges, while 3" ay and 3 a2 diverge.

if k is even.

3. Show that if t; > 0, then [[(1 +¢;) < exp(}_t;).

4. Show that if 0 < t; < 1, then [](1 —¢;) converges if and only if
> t; converges.

5. Show that the infinite product [](1 + a;) converges if and only
if there is N > 1 such that limp, o [[5_ (1 + ;) exists and is
nonzero.

6. Show that [](1 + a;) converges if and only if [T7_, (1 +a;) — 1 as
m,n — 0o. Hint. Take logarithms and invoke the Cauchy criterion
for series.

7. Show that if [J(1 + ax) converges, then []|1 + ax| converges.

8. Suppose ax — 0. Show that the series ) aj converges absolutely
if and only if both the series Y Arg(l + ax) and Y Log|l + ax|
converge absolutely.
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9. Show that H 1+ = —

n2 2n
n=1

o
n 1
2"y
10. Show that g(l-l-z ) =1 for |z] < 1.
11. Show that if p(2) is a polynomial of degree k such that px(0) =1
and pi(z) has no zeros in the disk {|z| < k3}, then [] px(z) converges
normally.



Exercises 357

12.

13.

14.

15.

16.

Establish one of the following formulae, and deduce from it the other
using logarithmic differentiation:

22
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Use the infinite product expansion for sin(mz) to show that the
Wallis product

1__[ 2k—1 2k+1) T n—oo 13-

converges to 7/2. Use this to show that

!2 22n
lim " 27 = .

A, Gl v

z sin(7z
Show that if ¢ > 0, then H (1 + —) converges to —Qtz
k mZ
—m<k<tm
as m — 0.
1o n n+1\°
Show that — H + converges to a meromorphic func-
o FEn n

tion I'(z) whose poles are simple poles at 0 and the negative integers.
Show that
— NI'm*
I'(z) = lim (m = Dtm .
mooo z(z+ 1) (z4+m—1)
Show that I'(z + 1) = 2I'(z). Show that I'(n + 1) = n! for positive
integers n. Remark. The function I'(z) is called the gamma func-

tion. It was first introduced by Euler, who defined it to be the limit
above. We will give an equivalent definition in the next chapter.

Let ay be a sequence of complex numbers, with possible repeti-
tions, such that |ag| < 1 and |ag| — 1, and consider the infinite
Blaschke product defined by

H Qp — 2
lax] 1—agz’

where the factors corresponding to oy = 0 are z.

(a) Suppose that > (1 — |ag|) < co. Let E be the set of accumu-
lation points on the unit circle 9D of the ay’s. Show that the
infinite product converges normally on C*\ E to a meromorphic
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function B(z), with the following properties: |B(z)| < 1 for
z €D, |B(z)| =1 for z € OD\E, and B(z) has zeros precisely
at the points ag.

(b) Show that if > (1 — |ak|) = +oo, then the partial products
converge uniformly on compact subsets of D to 0.

(¢) Suppose that f(z) is a bounded analytic function on D that is
not identically zero. Show that f(z) has a factorization f(z) =
B(z)g(z), where B(z) is a (finite or infinite) Blaschke product,
and g(z) is a bounded analytic function on D with no zeros. In
particular, the zeros a1, aa,... of f(z), repeated according to
multiplicity, satisfy Y (1 — |ag|) < 4o0.

4. The Weierstrass Product Theorem

The Weierstrass product theorem is a companion theorem to the Mittag-
Leffler theorem. The Mittag-Leffler theorem asserts that we can prescribe
the poles and principal parts of a meromorphic function. The Weierstrass
product theorem asserts that we can prescribe the zeros and poles of a
meromorphic function together with their orders.

Recall that the order of a meromorphic function f(z) at a point zg is the
order of the zero if f(zp) = 0, and it is minus the order of the pole if f(z)
has a pole at zg. If 2y is neither a pole nor a zero of f(z), the order of f(z)
at zg is defined to be 0.

Theorem (Weierstrass Product Theorem). Let D be a domain in
the complex plane. Let {2} be a sequence of distinct points of D with no
accumulation point in D, and let {ny} be a sequence of integers (positive
or negative). Then there is a meromorphic function f(z) on D whose only
zeros and poles are at the points zy, such that the order of f(z) at zy is ng.

The proof runs parallel to the proof of the Mittag-Leffler theorem. Let
K, be the set of z € D such that |z| < m and the distance from z to 9D is
at least 1/m. Then K, is a compact subset of D, K,,, C K,;,+1, and each
component of C*\ K,,, contains a point of C*\D. Suppose zx € Km+1\Km.-
We connect zj to a point wy € C*\D by a simple curve ¢ in C*\K,,. If
wi, # 0o we define fi(2) to be an analytic branch of log((z — 2zx)/(z — wk))
in the simply connected domain C*\y. If wg = oo, we take fi(z) to be an
analytic branch of log(1 — 2/2x). By Runge’s theorem, there is a rational
function gi(z) with only pole at wy, such that |fr(2) — gk(2)] < 27F/ny
on K,,. We consider the product :

(2= \" —nkgi(z)
& =1\ ;=) ¢ ,

k=1




