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product expansion for the sine function, 

Exercises for XIII.3 

1. Evaluate the following. 

2. Define ak = - ú =if k is odd, and ak = ú =+ ú =+ â ú =if k is even. 

Show that Il(1 + ak) converges, while Eak and b ~ ú =diverge. 

3. Show that if tj 2: 0, then Il(1 + tj) ú =exp(Etj). 

4. Show that if 0 < tj < 1, then Il(1 - tj) converges if and only if 
E tj converges. 

5. Show that the infinite product Il(1 + aj) converges if and only 
if there is N 2: 1 such that ä á ã ã ú ç ç =å ú Wk E N =+ aj) exists and is 
nonzero. 

6. Show that Il(l + aj) converges if and only if Il;=m(1 + aj) ú =1 as 
m, n ú =00. Hint. Take logarithms and invoke the Cauchy criterion 
for series. 

7. Show that if Il(l + ak) converges, then Il11 + akl converges. 

8. Suppose ak ú =o. Show that the series E ak converges absolutely 
if and only if both the series E Arg(1 + ak) and E Log 11 + akl 
converge absolutely. 

00 ( I ) 7r -7r 

9. Show that!! 1 + n2 = e ;; . 

00 1 
10. Show that II (1 + z2n) = 1- Z for Izi < 1. 

n=O 

11. Show that if Pk(Z) is a polynomial of degree k such that Pk(O) = I 
andpk(z) has no zeros in the disk {izi ú =k3 }, then IlPk(Z) converges 
normally. 
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12. Establish one of the following formulae, and deduce from it the other 
using logarithmic differentiation: 

eZ _ 1 = zez / 2 IIoo (1 + ----==-) 
47r2k2 ' 

k=l 

1 1 1 00 1 
eZ - 1 = -; - 2 + 2z L z2 + 47r2 k2 . 

k=l 

13. Use the infinite product expansion for sin{7rz) to show that the 
Wallis product 

IIoo (2k)2 . 2·2·4·4·6·6 (2n)·{2n) 
(2k-l){2k+l) = g K WK ú = 1.3.3.5.5.7"·{2n-l).{2n+l) 

k=l 

converges to 7r /2. Use this to show that 

[n!j2 22n 
lim -- -- ..;:ff. 

n--->oo (2n )! .Jii 

II ( Z) sin{7rz) 
14. Show that if t > 0, then 1 + k converges to 7rZ e 

-mS;k9m 
as m ú =00. 

15. Show that - II _n_ _n__ converges to a meromorphic func-1 00 (+I)Z 
Z n=l Z +n n 

tion r(z) whose poles are simple poles at 0 and the negative integers. 
Show that 

r(z) = lim (m - I)! m Z 
• 

m--->oo z{z + 1) ... (z + m - 1) 

Show that r{z + 1) = zr{z). Show that r{n + 1) = n! for positive 
integers n. Remark. The function r{z) is called the gamma func-
tion. It was first introduced by Euler, who defined it to be the limit 
above. We will give an equivalent definition in the next chapter. 

16. Let Ctk be a sequence of complex numbers, with possible repeti-
tions, such that ICtkl < 1 and ICtkl ú =1, and consider the infinite 
Blaschke product defined by 

B{z) - II Ctk Ctk- Z 
- ICtkl 1- CtkZ' 

where the factors corresponding to Ctk = 0 are z. 
(a) Suppose that 2:{1 -ICtkl) < 00. Let E be the set of accumu-

lation points on the unit circle 81Dl of the Ctk'S. Show that the 
infinite product converges normally on C*\E to a meromorphic 
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function B(z), with the following properties: IB(z)1 < 1 for 
z E JI)), IB(z)1 = 1 for z E aJl))\E, and B(z) has zeros precisely 
at the points ak. 

(b) Show that if E(l - lakl) = +00, then the partial products 
converge uniformly on compact subsets of JI)) to o. 

(c) Suppose that J(z) is a bounded analytic function on JI)) that is 
not identically zero. Show that J(z) has a factorization J(z) = 
B(z)g(z), where B(z) is a (finite or infinite) Blaschke product, 
and g(z) is a bounded analytic function on JI)) with no zeros. In 
particular, the zeros al, a2, . .. of J(z), repeated according to 
multiplicity, satisfy E(l - lakl) < +00. 

4. The Weierstrass Product Theorem 

The Weierstrass product theorem is a companion theorem to the Mittag-
Leffler theorem. The Mittag-Leffler theorem asserts that we can prescribe 
the poles and principal parts of a meromorphic function. The Weierstrass 
product theorem asserts that we can prescribe the zeros and poles of a 
meromorphic function together with their orders. 

Recall that the order of a meromorphic function J(z) at a point Zo is the 
order of the zero if J(zo) = 0, and it is minus the order of the pole if J(z) 
has a pole at zoo If Zo is neither a pole nor a zero of J(z), the order of J(z) 
at Zo is defined to be O. 

Theorem (Weierstrass Product Theorem). Let D be a domain in 
the complex plane. Let {Zk} be a sequence of distinct points of D with no 
accumulation point in D, and let {nk} be a sequence of integers (positive 
or negative). Then there is a meromorphic function J(z) on D whose only 
zeros and poles are at the points Zk, such that the order of J(z) at Zk is nk. 

The proof runs parallel to the proof of the Mittag-Leffler theorem. Let 
Km be the set of zED such that Izl ú =m and the distance from z to aD is 
at least 11m. Then Km is a compact subset of D, Km C Km+b and each 
component of C*\Km contains a point of C*\D. Suppose Zk E Km+l \Km. 
We connect Zk to a point Wk E C*\D by a simple curve 'Yk in C*\Km. If 
Wk #- 00 we define Jk(Z) to be an analytic branch of log((z - zk)/(z - Wk)) 
in the simply connected domain C*\'Yk. If Wk = 00, we take Jk(Z) to be an 
analytic branch of log(l - zl Zk). By Runge's theorem, there is a rational 
function gdz) with only pole at Wk such that l!k(z) - gk(z)1 ú = 2-k Ink 
on Km. We consider the product 


