Exercises for XIII. 4

1. Let $G(z)$ be the entire function defined by the infinite product (4.1). Show that $\pi z G(z) G(-z)=\sin (\pi z)$.
2. Construct an entire function that has simple zeros at the points n^{2}, $n \geq 0$, and no other zeros.
3. Construct an entire function that has simple zeros on the real axis at the points $\pm n^{1 / 4}, n \geq 0$, and no other zeros.
4. Construct an entire function that has simple zeros on the positive real axis at the points $\sqrt{n}, n \geq 1$, and double zeros on the imaginary axis at the points $\pm i \sqrt{n}, n \geq 1$, and no other zeros.
5. Construct an entire function that has simple zeros at the Gaussian integers $m+n i,-\infty<m, n<\infty$, and no other zeros.
6. Find all entire functions $f(z)$ that satisfy the functional equation $f(2 z)=(1-2 z) f(z)$. Express the answer in terms of an infinite product.
7. Show that

$$
\left|\log (1-\zeta)+\zeta+\frac{\zeta^{2}}{2}+\frac{\zeta^{3}}{3}+\cdots+\frac{\zeta^{N}}{N}\right| \leq \frac{1}{N} \frac{|\zeta|^{N+1}}{1-|\zeta|}
$$

for $|\zeta|<1$.
8. Let $\left\{z_{k}\right\}$ be a sequence of distinct nonzero points such that $\left|z_{k}\right| \rightarrow$ ∞, Let $N \geq 0$, and let $\left\{m_{k}\right\}$ be a sequence of positive integers such that $\sum m_{k}\left|z_{k}\right|^{-N-1}<\infty$. Show that

$$
\prod_{k=1}^{\infty}\left(1-\frac{z}{z_{k}}\right)^{m_{k}} \exp \left\{m_{k}\left[\frac{z}{z_{k}}+\frac{z^{2}}{2 z_{k}^{2}}+\cdots+\frac{z^{N}}{N z_{k}^{N}}\right]\right\}
$$

converges normally to an entire function with zeros of order m_{k} at z_{k} and no other zeros. Hint. See the estimate in the preceding exercise.
9. Show that any meromorphic function $f(z)$ on a domain D is the quotient $f(z)=g(z) / h(z)$ of two analytic functions $g(z)$ and $h(z)$ on D.
10. Let $f(z)$ be a meromorphic function on a simply connected domain D. Show that the meromorphic functions with the same zeros and poles of the same orders as $f(z)$ are precisely the functions of the form $f(z) e^{h(z)}$, where $h(z)$ is analytic on D.
11. Give a brief solution of Exercise 1.5 on interpolating sequences based on the Mittag-Leffler theorem and the Weierstrass product theorem.

