# Math 185: Homework 2 Solution 

Instructor: Peng Zhou

The following exercises are from Stein's textbook, Chapter 1.

## 1 Problem 1

Problem (1.10). Show that

$$
4 \frac{\partial}{\partial z} \frac{\partial}{\partial \bar{z}}=4 \frac{\partial}{\partial \bar{z}} \frac{\partial}{\partial z}=\Delta
$$

where $\Delta$ is the Laplacian.

$$
\Delta=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}
$$

Solution. From page 12 of Stein, we get

$$
\frac{\partial}{\partial z}=\frac{1}{2}\left(\frac{\partial}{\partial x}-i \frac{\partial}{\partial y}\right) \quad \frac{\partial}{\partial \bar{z}}=\frac{1}{2}\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right)
$$

Plug in and you get the desired result.

## 2 Problem 2

Problem (1.11). Use Exercise 10 to show that if $f$ is holomorphic, then the real part and imaginary part of $f$ is harmonic.
Solution. If $f$ is holomorphic, then $\partial f / \partial \bar{z}=0$ everywhere, hence further derivative

$$
\frac{\partial}{\partial z} \frac{\partial}{\partial \bar{z}} f=0
$$

as well. The same argument can be applied to function $\bar{f}$, which sends $z$ to $\overline{f(z)}$. More precisely, we have

$$
\frac{\partial}{\partial z} \bar{f}=\overline{\left(\frac{\partial f}{\partial \bar{z}}\right)}=0
$$

then apply $\partial / \partial b a r z$ to it, we get

$$
\frac{\partial}{\partial z} \frac{\partial}{\partial \bar{z}} \bar{f}=0
$$

Thus

$$
\Delta \operatorname{Re} f=4 \frac{\partial}{\partial z} \frac{\partial}{\partial \bar{z}} \frac{f+\bar{f}}{2}=0
$$

The case for imaginary part is similar.
Alternatively, you can write $f=u+i v$ for the real and imaginary part, then use Cauchy Riemann condition to get

$$
\partial_{x}^{2} u+\partial_{y}^{2} u=\partial_{x}\left(\partial_{y} v\right)+\partial_{y}\left(-\partial_{x} v\right)=0 .
$$

Remark. Hmm, every holomorphic function has its real part being a harmonic function. Does every harmonic arise in this way? Namely, given a harmonic function $u$, can we find another harmonic function $v$, such that $f=u+i v$ is a holomorphic function?

## 3 Problem 3

Problem (1.13). Suppose that $f$ is holomorphic in an open set $\Omega$. Prove that in any one of the following cases:

1. $\operatorname{Re}(f)$ is constant.
2. $\operatorname{Im}(f)$ is constant.
3. $|f|$ is constant.

One can conclude $f$ is constant.
Solution. Let $f=u+i v$.
If $u$ is constant, then by Cauchy Riemann condition, we know $\partial_{x} v=-\partial_{y} u=$ 0 and $\partial_{y} v=\partial_{x} u=0$, hence $v$ is constant. Thus $f$ is constant.

If $v$ is constant, by similar argument, we know $u$ is constant.
If $|f|$ is constant and non-zero, we can say $\operatorname{Re}(\log f)$ is constant, hence $\log f$ is constant. If you complain that we have not learned log, then we can look at problem 9. If you complain that we haven't done problem 9, then we can consider $|f|^{2}=u^{2}+v^{2}$ being constant, then

$$
0=\frac{\partial}{\partial z} \frac{\partial}{\partial \bar{z}}(f \bar{f})=\frac{\partial f}{\partial z} \frac{\partial \bar{f}}{\partial \bar{z}}=\left|\frac{\partial f}{\partial z}\right|^{2} \Rightarrow \frac{\partial f}{\partial z}=0
$$

This forces $f$ being a constant, thanks to page 23 Corollary 3.4.

## 4 Problem 4

Problem (Ex 1.15). If $\sum_{n=1}^{\infty} a_{n}$ converges, show that

$$
\lim _{r \rightarrow 1^{-}} \sum_{n=1}^{\infty} r^{n} a_{n}=\lim _{r \rightarrow 1-} \sum_{n=1}^{\infty} a_{n}
$$

Solution. Let $A_{N}=\sum_{n=1}^{N} a_{n}$, with $A_{0}=0$, then

$$
C(N, r)=\sum_{n=1}^{N} r^{n} a_{n}=\sum_{n=1}^{N} r^{n}\left(A_{n}-A_{n-1}\right)=\sum_{n=1}^{N} r^{n} A_{n}-\sum_{n=1}^{N-1} r^{n+1} A_{n}=\sum_{n=1}^{N-1}(1-r) r^{n} A_{n}+r^{N} A_{N}
$$

We want to show that

$$
\lim _{r \rightarrow 1^{-}} \lim _{N \rightarrow \infty} C(N, r)=A
$$

note that the ordre of the limit cannot be changed without justification. We note that $A=\lim _{n} A_{n}=\sum_{n} a_{n}$ exists, hence

$$
\lim _{N \rightarrow \infty} r^{N} A_{N}=\lim _{N \rightarrow \infty} r^{N} \lim _{N} A_{N}=0 \cdot A=0 .
$$

Next, we consider
$\sum_{n=1}^{\infty}(1-r) r^{n} A_{n}=\sum_{n=1}^{\infty}(1-r) r^{n}\left(A+\left(A_{n}-A\right)\right)=A \sum_{n}(1-r) r^{n}+\sum_{n}(1-r) r^{n} B_{n}=A+\sum_{n}(1-r) r^{n} B_{n}$.
where we let $B_{n}=A_{n}-A$, thus $\lim B_{n}=0$. We need to show that

$$
\lim _{r \rightarrow 1^{-}} \sum_{n}(1-r) r^{n} B_{n}=0 .
$$

For any $\epsilon>0$, it suffice to show that

$$
\lim _{r \rightarrow 1^{-}}\left|\sum_{n}(1-r) r^{n} B_{n}\right|<\epsilon .
$$

Since $B_{n} \rightarrow 0$, we know that there exists $N>0$, such that for any $n \geq N$, $\left|B_{n}\right|<\epsilon$. Thus, we have

$$
\left|\sum_{n=N}^{\infty}(1-r) r^{n} B_{n}\right| \leq \sum_{n=N}^{\infty}(1-r)^{r n} \epsilon=\epsilon r^{N} \sum_{n=0}^{\infty}(1-r) r^{n}=r^{N} \epsilon<\epsilon
$$

Thus

$$
\begin{aligned}
\lim _{r \rightarrow 1^{-}}\left|\sum_{n}(1-r) r^{n} B_{n}\right| & \leq \lim _{r \rightarrow 1^{-}}\left|\sum_{n=1}^{N-1}(1-r) r^{n} B_{n}\right|+\left|\sum_{n=N}^{\infty}(1-r) r^{n} B_{n}\right| \\
& <\lim _{r \rightarrow 1} \sum_{n=1}^{N-1}(1-r) r^{n}\left|B_{n}\right|+\epsilon \\
& =\sum_{n=1}^{N-1} 0\left|B_{n}\right|+\epsilon=\epsilon
\end{aligned}
$$

where in the next to last step, we can switch the order of the finite summation $\sum_{n=1}^{N-1}$ and $\lim _{r \rightarrow 1}$. Thus we have finished the proof.

## 5 Problem 5

Problem. Exercise 16 (a) (c) (e) Determine the radius of convergence of the series $\sum_{n=1}^{\infty} a_{n} z^{n}$ when
(a) $a_{n}=(\log n)^{2}$
(c) $a_{n}=\frac{n^{2}}{4^{n}+3 n}$
(e) Find the radius of convergence for the hypergeometric series

$$
F(\alpha, \beta, \gamma ; z)=1+\sum_{n=1}^{\infty} \frac{\alpha(\alpha+1) \cdots(\alpha+n-1) \beta(\beta+1) \cdots(\beta+n-1)}{n!\gamma(\gamma+1) \cdots(\gamma+n-1)} z^{n}
$$

Here $\alpha, \beta \in \mathbb{C}$ and $\gamma \neq 0,-1,-2, \cdots$.
Solution. (a) We have limit

$$
(1 / n) \log \left|a_{n}\right|=(2 / n) \log |\log n| \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

Hence $1 / R=e^{0}=1$, and $R=1$.
(c) We have limit (better than lim sup)

$$
1 / R=\lim _{n \rightarrow \infty}\left|\frac{n^{2}}{4^{n}+3 n}\right|^{1 / n}=\frac{\lim _{n \rightarrow \infty}|n|^{2 / n}}{4 \lim \left(1+3 n 4^{-n}\right)^{1 / n}}=\frac{1}{4}
$$

where we used the rules that, if $a=\lim _{n} a_{n}, b=\lim _{n} b_{n}$, then $\lim _{n} a_{n} b_{n}=$ $a b, \lim _{n} a_{n}^{b_{n}}=a^{b}$ etc. Hence $R=4$.
(e) Using ratio test (as justified in exercise 17), we have

$$
\frac{a_{n}}{a_{n-1}}=\frac{(\alpha+n-1)(\beta+n-1)}{n(\gamma+n-1)}=\frac{\left(1+\frac{\alpha-1}{n}\right)\left(1+\frac{\beta-1}{n}\right)}{\left(1+\frac{\gamma-1}{n}\right)} \rightarrow 1 \quad \text { as } n \rightarrow \infty
$$

Hence $R=1$.

