
Math 185: Homework 2 Solution

Instructor: Peng Zhou

The following exercises are from Stein’s textbook, Chapter 1.

1 Problem 1

Problem (1.10). Show that

4
∂

∂z

∂

∂z
= 4

∂

∂z

∂

∂z
= ∆

where ∆ is the Laplacian.
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Solution. From page 12 of Stein, we get
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Plug in and you get the desired result.

2 Problem 2

Problem (1.11). Use Exercise 10 to show that if f is holomorphic, then the
real part and imaginary part of f is harmonic.

Solution. If f is holomorphic, then ∂f/∂z = 0 everywhere, hence further
derivative

∂
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∂

∂z
f = 0

as well. The same argument can be applied to function f , which sends z to
f(z). More precisely, we have
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then apply ∂/∂barz to it, we get
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f = 0.
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Thus

∆Ref = 4
∂

∂z

∂

∂z

f + f

2
= 0

The case for imaginary part is similar.
Alternatively, you can write f = u+ iv for the real and imaginary part, then

use Cauchy Riemann condition to get

∂2xu+ ∂2yu = ∂x(∂yv) + ∂y(−∂xv) = 0.

Remark. Hmm, every holomorphic function has its real part being a harmonic
function. Does every harmonic arise in this way? Namely, given a harmonic
function u, can we find another harmonic function v, such that f = u+ iv is a
holomorphic function?

3 Problem 3

Problem (1.13). Suppose that f is holomorphic in an open set Ω. Prove that
in any one of the following cases:

1. Re(f) is constant.

2. Im(f) is constant.

3. |f | is constant.

One can conclude f is constant.

Solution. Let f = u+ iv.
If u is constant, then by Cauchy Riemann condition, we know ∂xv = −∂yu =

0 and ∂yv = ∂xu = 0, hence v is constant. Thus f is constant.
If v is constant, by similar argument, we know u is constant.
If |f | is constant and non-zero, we can say Re(log f) is constant, hence log f

is constant. If you complain that we have not learned log, then we can look
at problem 9. If you complain that we haven’t done problem 9, then we can
consider |f |2 = u2 + v2 being constant, then

0 =
∂

∂z

∂

∂z
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∂f
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∣∣∣∣2 ⇒ ∂f

∂z
= 0.

This forces f being a constant, thanks to page 23 Corollary 3.4.

4 Problem 4

Problem (Ex 1.15). If
∑∞
n=1 an converges, show that

lim
r→1−

∞∑
n=1

rnan = lim
r→1−

∞∑
n=1

an.
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Solution. Let AN =
∑N
n=1 an, with A0 = 0, then

C(N, r) =

N∑
n=1

rnan =

N∑
n=1

rn(An−An−1) =

N∑
n=1

rnAn−
N−1∑
n=1

rn+1An =

N−1∑
n=1

(1−r)rnAn+rNAN .

We want to show that
lim
r→1−

lim
N→∞

C(N, r) = A

note that the ordre of the limit cannot be changed without justification. We
note that A = limnAn =

∑
n an exists, hence

lim
N→∞

rNAN = lim
N→∞

rN lim
N
AN = 0 ·A = 0.

Next, we consider

∞∑
n=1

(1−r)rnAn =

∞∑
n=1

(1−r)rn(A+(An−A)) = A
∑
n

(1−r)rn+
∑
n

(1−r)rnBn = A+
∑
n

(1−r)rnBn.

where we let Bn = An −A, thus limBn = 0. We need to show that

lim
r→1−

∑
n

(1− r)rnBn = 0.

For any ε > 0, it suffice to show that

lim
r→1−

|
∑
n

(1− r)rnBn| < ε.

Since Bn → 0, we know that there exists N > 0, such that for any n ≥ N ,
|Bn| < ε. Thus, we have

|
∞∑
n=N

(1− r)rnBn| ≤
∞∑
n=N

(1− r)rnε = εrN
∞∑
n=0

(1− r)rn = rN ε < ε.

Thus

lim
r→1−

|
∑
n

(1− r)rnBn| ≤ lim
r→1−

|
N−1∑
n=1

(1− r)rnBn|+ |
∞∑
n=N

(1− r)rnBn|

< lim
r→1

N−1∑
n=1

(1− r)rn|Bn|+ ε

=

N−1∑
n=1

0|Bn|+ ε = ε

where in the next to last step, we can switch the order of the finite summation∑N−1
n=1 and limr→1. Thus we have finished the proof.
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5 Problem 5

Problem. Exercise 16 (a) (c) (e) Determine the radius of convergence of the
series

∑∞
n=1 anz

n when

(a) an = (log n)2

(c) an = n2

4n+3n

(e) Find the radius of convergence for the hypergeometric series

F (α, β, γ; z) = 1 +

∞∑
n=1

α(α+ 1) · · · (α+ n− 1)β(β + 1) · · · (β + n− 1)

n!γ(γ + 1) · · · (γ + n− 1)
zn

Here α, β ∈ C and γ 6= 0,−1,−2, · · · .

Solution. (a) We have limit

(1/n) log |an| = (2/n) log | log n| → 0 as n→∞

Hence 1/R = e0 = 1, and R = 1.
(c) We have limit (better than lim sup)

1/R = lim
n→∞

∣∣∣∣ n2

4n + 3n

∣∣∣∣1/n =
limn→∞ |n|2/n

4 lim(1 + 3n4−n)1/n
=

1

4

where we used the rules that, if a = limn an, b = limn bn, then limn anbn =
ab, limn a

bn
n = ab etc. Hence R = 4.

(e) Using ratio test (as justified in exercise 17), we have

an
an−1

=
(α+ n− 1)(β + n− 1)

n(γ + n− 1)
=

(1 + α−1
n )(1 + β−1

n )

(1 + γ−1
n )

→ 1 as n→∞

Hence R = 1.
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