Math 185: Homework 3 Solution

Instructor: Peng Zhou

The following exercises are from Stein's textbook, Chapter 1, prob 25, and Ch2: 1, 2,3,4

Problem (1.25). The next three calculations provide some insight into Cauchy's theorem, which we treat in the next chapter.
(a) Evaluate the integrals

$$
\int_{\gamma} z^{n} d z
$$

where $n \in$ and γ is any circle centers at the origin with the positive clockwise orientation
(b) Same question as before, but with γ any circle not containing the origin.
(c) Show that if $|a|<r<|b|$, then

$$
\int_{\gamma} \frac{1}{(z-a)(z-b)} d z=\frac{2 \pi i}{a-b}
$$

where γ denotes the circle centered at the origin, of radius r, with the positive orientation.

Solution. For (a), we can parameterize $z=r e^{i \theta}$ for θ running from 0 to 2π. Then

$$
\int_{\gamma} z^{n} d z=\int_{0}^{2 \pi} r^{n} e^{i n \theta} r e^{i \theta} i d \theta=r^{1+n} i \int_{0}^{2 \pi} e^{i(1+n) \theta} d \theta= \begin{cases}2 \pi i & n=-1 \\ 0 & \text { else }\end{cases}
$$

Alternatively, for $n \neq-1$, we can find primitive of z^{n} as $z^{n+1} /(n+1)$ over $\mathbb{C} \backslash\{0\}$, then one can apply Corollary 3.2 .

For (b), we parameterize the circle as $z=z_{0}+r e^{i \theta}$ with $\left|z_{0}\right|>r$. Then again over the cirlce, for $n \neq-1$ we can find primitive of z^{n}, hence the integral is zero. Suffice to consider the case $n=-1$, thus we have

$$
\int_{\gamma} z^{-1} d z=\int_{0}^{2 \pi} \frac{r e^{i \theta}}{z_{0}+r e^{i \theta}} i d \theta
$$

Since $\left|z_{0}\right|>$, we can expand the integrand

$$
\frac{r e^{i \theta}}{z_{0}+r e^{i \theta}}=\sum_{n=0}^{\infty}(-1)^{n}\left(\frac{r e^{i \theta}}{z_{0}}\right)^{n+1}
$$

Now we are going to switch the order of summation and integration, again, we check the absolute convergence, namely

$$
\int_{0}^{2 \pi} \sum_{n=0}^{\infty}\left(\frac{r}{\left|z_{0}\right|}\right)^{n+1} d \theta=2 \pi \frac{r}{\left|z_{0}\right|} \frac{1}{1-\frac{r}{\left|z_{0}\right|}}<\infty
$$

Hence

$$
\int_{0}^{2 \pi} \frac{r e^{i \theta}}{z_{0}+r e^{i \theta}} i d \theta=\sum_{n=0}(-1)^{n} \int_{0}^{2 \pi}\left(\frac{r e^{i \theta}}{z_{0}}\right)^{n+1} d \theta=0
$$

Finally, for (c). We can write

$$
\frac{1}{(z-a)(z-b)}=\frac{1}{a-b}\left(\frac{1}{(z-a)}-\frac{1}{(z-b)}\right)
$$

and do integration for both terms. The first term is like (a) where the point a is within the circle $|z|=r$, the second term is like (b) and contribution is zero.

The integral for the first term can be computered using power series again

$$
\begin{aligned}
\int_{|z|=r} \frac{1}{z-a} d z & =\int_{|z|=r} \frac{1}{z(1-a / z)} d z=\int_{|z|=r} z^{-1}\left(1+a / z+(a / z)^{2}+\cdots\right) d z \\
& =\sum_{n=0}^{\infty} \int_{|z|=r} z^{-1}(a / z)^{n} d z=\int_{|z|=r} z^{-1} d z=2 \pi i
\end{aligned}
$$

where when we switch the summation and integral, we again checked that the double sum (more precisely, the integral-sum, is absolutely convergent, meaning if we take the absolute value of the summand-integrand, the integral is still finite).

Alternatively, you can use the Cauchy integral formula in Ch2 to do this problem.

