3
 Math 185: Homework Solution

Instructor: Peng Zhou

The following exercises are from Stein's textbook, Chapter 1, prob 25, and Ch2: 1, 2,3,4

Problem (1.25). The next three calculations provide some insight into Cauchy's theorem, which we treat in the next chapter.
(a) Evaluate the integrals

$$
\int_{\gamma} z^{n} d z
$$

where $n \in$ and γ is any circle centers at the origin with the positive clockwise orientation
(b) Same question as before, but with γ any circle not containing the origin.
(c) Show that if $|a|<r<|b|$, then

$$
\int_{\gamma} \frac{1}{(z-a)(z-b)} d z=\frac{2 \pi i}{a-b}
$$

where γ denotes the circle centered at the origin, of radius r, with the positive orientation.

Solution. For (a), we can parameterize $z=r e^{i \theta}$ for θ running from 0 to 2π. Then

$$
\int_{\gamma} z^{n} d z=\int_{0}^{2 \pi} r^{n} e^{i n \theta} r e^{i \theta} i d \theta=r^{1+n} i \int_{0}^{2 \pi} e^{i(1+n) \theta} d \theta= \begin{cases}2 \pi i & n=-1 \\ 0 & \text { else }\end{cases}
$$

Alternatively, for $n \neq-1$, we can find primitive of z^{n} as $z^{n+1} /(n+1)$ over $\mathbb{C} \backslash\{0\}$, then one can apply Corollary 3.2 .

For (b), we parameterize the circle as $z=z_{0}+r e^{i \theta}$ with $\left|z_{0}\right|>r$. Then again over the cirlce, for $n \neq-1$ we can find primitive of z^{n}, hence the integral is zero. Suffice to consider the case $n=-1$, thus we have

$$
\int_{\gamma} z^{-1} d z=\int_{0}^{2 \pi} \frac{r e^{i \theta}}{z_{0}+r e^{i \theta}} i d \theta
$$

Since $\left|z_{0}\right|>$, we can expand the integrand

$$
\frac{r e^{i \theta}}{z_{0}+r e^{i \theta}}=\sum_{n=0}^{\infty}(-1)^{n}\left(\frac{r e^{i \theta}}{z_{0}}\right)^{n+1}
$$

Now we are going to switch the order of summation and integration, again, we check the absolute convergence, namely

$$
\int_{0}^{2 \pi} \sum_{n=0}^{\infty}\left(\frac{r}{\left|z_{0}\right|}\right)^{n+1} d \theta=2 \pi \frac{r}{\left|z_{0}\right|} \frac{1}{1-\frac{r}{\left|z_{0}\right|}}<\infty
$$

Hence

$$
\int_{0}^{2 \pi} \frac{r e^{i \theta}}{z_{0}+r e^{i \theta}} i d \theta=\sum_{n=0}(-1)^{n} \int_{0}^{2 \pi}\left(\frac{r e^{i \theta}}{z_{0}}\right)^{n+1} d \theta=0
$$

Finally, for (c). We can write

$$
\frac{1}{(z-a)(z-b)}=\frac{1}{a-b}\left(\frac{1}{(z-a)}-\frac{1}{(z-b)}\right)
$$

and do integration for both terms. The first term is like (a) where the point a is within the circle $|z|=r$, the second term is like (b) and contribution is zero.

The integral for the first term can be computered using power series again

$$
\begin{aligned}
\int_{|z|=r} \frac{1}{z-a} d z & =\int_{|z|=r} \frac{1}{z(1-a / z)} d z=\int_{|z|=r} \frac{1}{z(1-a / z)}=\int_{|z|=r} z^{-1}\left(1+a / z+(a / z)^{2}+\cdots\right) d z \\
& =\sum_{n=0}^{\infty} \int_{|z|=r} z^{-1}(a / z)^{-n} d z=\int_{|z|=r} z^{-1} d z=2 \pi i
\end{aligned}
$$

where when we switch the summation and integral, we again checked that the double sum (more precisely, the integral-sum, is absolutely convergent, meaning if we take the absolute value of the summand-integrand, the integral is still finite).
\#1. Prove that $\int_{0}^{\infty} \sin \left(x^{2}\right) d x=\int_{0}^{\infty} \cos \left(x^{2}\right) d x=\frac{\sqrt{2 \pi}}{4}$.
Proof: Consider the contour integral $\int_{C_{R}} e^{-z^{2}} d z$, where C_{R} is as follows

- Since $e^{-z^{2}}$ is an entire function, by Cauchy theorem, we have $\quad \int_{C_{R}} \cdot e^{-z^{2}} \cdot d z=0$.

$$
-I_{1}=\int_{C_{R, 1}} e^{-z^{2}} d z=\int_{0}^{R} e^{-x^{2}} d x
$$

$$
\begin{aligned}
I_{2} & =\int_{C R, 2} e^{-z^{2}} d z=\int_{\theta=0}^{\pi / 4} e^{-\left(R e^{i \theta}\right)^{2}} \cdot d\left(R e^{i \theta}\right) \\
& =\int_{\theta=0}^{\pi / 4} e^{-R^{2} e^{2 i \theta}} R e^{i \theta} \cdot i d \theta \\
I_{3} & =\int_{C R, 3} e^{-z^{2}} d z=\int_{r=R}^{0} e^{-\left(r e^{\left.i \frac{\pi}{4}\right)^{2}}\right.} d\left(r \cdot e^{i \frac{\pi}{4}}\right) \\
& =-e^{i \frac{\pi}{4}} \int_{0}^{R} e^{-i r^{2}} d r=-e^{i \frac{\pi}{4}} \cdot \int_{0}^{R} \cos \left(r^{2}\right)-i \sin \left(r^{2}\right) d r
\end{aligned}
$$

We claim that: $I_{2} \rightarrow 0$ as $R \rightarrow \infty$. Given the claim, we have

$$
\begin{aligned}
& \text { have } \\
& \qquad \int_{0}^{\infty} \cos \left(r^{2}\right)-i \cdot \sin \left(r^{2}\right) d r=\lim _{R \rightarrow \infty}\left(\frac{I_{3}}{-e^{i / 4 / 4}}\right)=\lim _{R \rightarrow \infty} \frac{-I_{1}-I_{2}}{-e^{i \pi / 4}} \\
& =\lim _{R \rightarrow \infty} \frac{I_{1}}{e^{i \pi / 4}}=e^{-i \frac{\pi}{4}} \cdot \frac{\sqrt{\pi}}{2}=\left(\frac{\sqrt{2}}{2}-i \frac{\sqrt{2}}{2}\right) \cdot \frac{\sqrt{\pi}}{2}=\frac{\sqrt{2 \pi}}{4}-i \frac{\sqrt{2 \pi}}{4} .
\end{aligned}
$$

Since $\int_{0}^{\infty} \cos r^{2} d r$ and $\int_{0}^{\infty} \sin \left(r^{2}\right) d r$ are both real, we can compare the real cund imaginary parts of the above equation and get the desired result.

Now, we turn back to prove the claim.

$$
\begin{aligned}
\left|I_{2}\right| & =\left|\int_{\theta=0}^{\pi / 4} \cdot e^{-R^{2} e^{2 i \theta}} R e^{i \theta} i \cdot d \theta\right| \\
& \leqslant \int_{0}^{\pi / 4} \cdot e^{-R^{2} \cos 2 \theta} R \cdot d \theta
\end{aligned}
$$

For $\quad \theta \in[0, \pi / 4]$, let $\theta=\frac{\pi}{4}-u$, we have

$$
\cos (2 \theta)=\cos \left(\frac{\pi}{2}-2 u\right)=\sin (2 u) \geqslant \frac{4}{\pi} u \text { for } u \in\left[0, \frac{\pi}{4}\right] \text {. }
$$

$$
\begin{aligned}
& \int_{0}^{\frac{\pi}{4}} e^{-R^{2} \cos 2 \theta} d \theta=\int_{0}^{\frac{\pi}{4}} e^{-R^{2} \sin (2 u)} d u \leqslant \int_{\delta}^{\frac{\pi}{4}} e^{-R^{2} \cdot \frac{4}{\pi} u} d u \\
& \leqslant \int_{0}^{\infty} e^{-R^{2} \frac{4}{\pi} \cdot u} d u=\frac{\pi}{4 R^{2}}
\end{aligned}
$$

Thus. $\quad\left|I_{2}\right| \leqslant R \cdot \frac{\pi}{4 R^{2}}=\frac{\pi}{4} \cdot \frac{1}{R} \rightarrow 0$ as $R \rightarrow \infty$. \#.
\#2 Show that $\int_{0}^{\infty} \frac{\sin x}{x} d x=\frac{\pi}{2}$.

Proof: $\int_{0}^{\infty} \frac{\sin x}{x} d x=\lim _{\substack{\varepsilon \rightarrow 0, R \rightarrow \infty}} \int_{\varepsilon}^{R} \frac{\sin x}{x} d x=\lim _{\cdots} \int_{\varepsilon}^{R} \frac{e^{i x}-e^{-i x}}{2 i x} d x$

$$
=\lim _{\cdots}\left(\int_{\varepsilon}^{R} \frac{e^{i x}}{2 i x} d x+\int_{\varepsilon}^{R} \frac{-e^{-i x}}{2 i x} d x\right)
$$

Let $x=-u$, then $u=-x$ from -2 to $-R$

$$
=\lim \left(\int_{\varepsilon}^{R} \frac{e^{i x}}{2 i x} d x+\int_{-\varepsilon}^{-R} \frac{-e^{i u}}{-2 i u} d(-u)\right)
$$

$$
=\lim \left(\int_{\varepsilon}^{R} \frac{e^{i x}}{2 i x} d x+\int_{-R}^{-\varepsilon} \frac{e^{i u}}{2 i u} d u\right)
$$ gives a minus gives a minus

$=\lim \left(\int_{-R}^{-\varepsilon}+\int_{\varepsilon}^{R}\right) \frac{e^{i x}}{2 i x} d x$
\rightarrow switch direction of integration

Note that, $\quad \int_{\varepsilon}^{R} \frac{1}{x} d x=-\int_{-R}^{-\varepsilon} \frac{1}{x} d x$., hence the above integral is also

$$
\lim _{\cdots}\left(\int_{-R}^{-\varepsilon}+\int_{\varepsilon}^{R}\right) \frac{e^{i x}-1}{2 i x} d x . \quad \cdots \cdot(* *) .
$$

as suggested by the hint.

In the following, I will give 2 solutions using ($*$) or. ($* *$),

Using(*): Consider the contour

Then

$$
\int_{c_{\varepsilon}} \frac{e^{i z}}{2 i z} d z=\int_{C_{\varepsilon}} \frac{e^{i z}-1}{2 i z}+\frac{1}{2 i z} d z
$$

since $\left(e^{i z-1}\right) /(2 i z)$ is a bounded function near $z=0$., $\int_{C_{\varepsilon}} \frac{e^{i z-1}}{2 i z} d z \rightarrow 0$ as $\varepsilon \rightarrow 0$.

$$
\int_{C_{2}} \frac{1}{2 i z} d z=\frac{1}{2 i} \int_{\theta=\pi}^{0} \frac{1}{\varepsilon e^{i \theta}} \varepsilon \cdot e^{i \theta} \cdot i d \theta=\frac{1}{2 i}(-\pi i)=-\frac{\pi}{2}
$$

$\int_{C_{R}} \frac{e^{i z}}{2 i z} d z \rightarrow 0$ as $R \rightarrow \infty$ by Jordan Lemma,
Thus

$$
\lim _{\substack{\varepsilon \rightarrow 0 \\ k \rightarrow \infty}}\left(\int_{c_{-}}+\int_{C_{+}}\right) \frac{e^{i z}}{2 i z} d z=-\lim _{\ldots}\left(\int_{c_{\varepsilon}}+\int_{c_{k}}\right) \frac{e^{i z}}{2 i z} d z=\frac{\pi}{2}
$$

Using (**): Consider the some contour, now we have.

$$
\begin{aligned}
\int_{C_{\varepsilon}} \frac{e^{i z}-1}{2 i z} d z & \rightarrow 0 \text { as } \varepsilon \rightarrow 0 \\
\int_{C_{R}} \frac{e^{i z}-1}{2 i z} d z & =\int_{C_{R}} \frac{-1}{2 i z} d z+\int_{C_{R}} \frac{e^{i z}}{2 i z} d z \\
& \rightarrow \int_{C_{R}} \frac{-1}{2 i z} d z \quad \text { as } R \rightarrow \infty \\
& =\frac{-1}{2 i} \cdot(\pi i)=-\frac{\pi}{2} .
\end{aligned}
$$

Thus

$$
\lim _{\substack{\varepsilon \rightarrow 0 \\ k \rightarrow \infty}}\left(\int_{c_{-}}+\int_{c_{+}}\right) \frac{e^{i z_{-}-1}}{2 i z} d z=-\lim _{\ldots}\left(\int_{c_{\varepsilon}}+\int_{c_{k}}\right) \frac{e^{i z}-1}{2 i z} d z=\frac{\pi}{2}
$$

\#3 Evaluate the integral

$$
\int_{0}^{\infty} e^{-a x} \cos (b x) d x \quad \int_{0}^{\infty} e^{-a x} \cdot \sin (b x) d x, a>0 .
$$

Sol:

$$
\int_{0}^{\infty} e^{-a x} \cos (b x) d x=\operatorname{Re}\left(\int_{0}^{\infty} e^{-a x} \cdot e^{i b x} d x\right)
$$

let $z=(a-i b) x$, then as x goes from 0 to ∞ z goes along $(a-i b) \cdot \mathbb{R}_{\geqslant 0}$ ray to $\infty . \quad \frac{d z}{d x}=a-i b$

$$
\left(\text { call it) } \quad \therefore d x=\frac{d z}{a-i b}\right.
$$

$$
\begin{aligned}
I=\int_{0}^{\infty} e^{-a x+i b x} d x & =\int_{\gamma} e^{-z} \frac{d z}{a-i b}=\frac{a+i b}{a^{2}+b^{2}} \int_{\gamma} e^{-z} d z \\
& =\frac{a+i b}{a^{2}+b^{2}}\left(\frac{e^{-z}}{-1}\right)_{0}^{\infty}=\frac{a+i b}{a^{2}+b^{2}} \\
\int_{0}^{\infty} e^{-a x} \sin b x d x & =\operatorname{Re}(I)=\frac{a}{a^{2}+b^{2}} \\
\int_{0}^{\infty} e^{-a x} \sin b x d x & =\operatorname{Im}(I)=\frac{b}{a^{2}+b^{2}}
\end{aligned}
$$

\#4 Prove that for all $\xi \in \mathbb{C}$, we have

$$
e^{-\pi \cdot \delta^{2}}=\int_{-\infty}^{+\infty} e^{-\pi x^{2}} \cdot e^{2 \pi i \cdot x \cdot \xi} d x
$$

Pf: Consider the RHS of the equation:

$$
\begin{aligned}
& \int_{-\infty}^{+\infty} e^{-\pi\left(x^{2}-2 i x \xi\right)} d x=\int_{-\infty}^{+\infty} e^{-\pi\left((x-i \xi)^{2}-(i \xi)^{2}\right)} d x \\
= & \int_{-\infty}^{+\infty} e^{-\pi(x-i \xi)^{2}-\pi \xi^{2}} d x .
\end{aligned}
$$

Hence, suffice to prove that

$$
\int_{-\infty}^{+\infty} e^{-\pi(x-i \xi)^{2}} d x=1
$$

Now

$$
\lim _{R \rightarrow \infty} \int_{-R}^{R} e^{-\pi(x-i \xi)^{2}} d x=\lim _{R \rightarrow \infty} \int_{-R-i \xi}^{R-i \xi} e^{-\pi u^{2}} d u
$$

where $u=x-i \xi$.

$$
\begin{aligned}
& \text { here } u={ }^{x} x-i \xi- \\
& =\lim _{R \rightarrow \infty}\left(\int_{-R-i \xi}^{-R}+\int_{-R}^{R}+\int_{R}^{R-i \xi}\right) e^{-\pi u^{2}} d u
\end{aligned}
$$

Suffice to prove that $\int_{-R-i \xi}^{-R} e^{-\pi u^{2}} d u \rightarrow 0$ and $\int_{R}^{R-i \xi} e^{-\pi u^{2}} d u \rightarrow 0$.

$$
\begin{aligned}
&\left|\int_{R}^{R-i \xi} e^{-\pi u^{2}} d u\right|=\left|\int_{t=0}^{1} e^{-\pi(R-i \xi t)^{2}} d(R-i \xi t)\right| \\
& \leq \int_{0}^{1} e^{-\pi \cdot \operatorname{Re}(R-i \xi t)^{2}}|\xi| \cdot d t \\
& \leq\left(\max _{t \in[0,1(13} e^{-\pi \cdot \operatorname{Re}\left((R-i \xi t)^{2}\right)}\right) \cdot|\xi|
\end{aligned}
$$

$$
\begin{aligned}
\because \quad \operatorname{Re}\left((R-i \xi t)^{2}\right) & =\operatorname{Re}\left(R^{2}-2 i \xi t \cdot R+(i \xi t)^{2}\right) \\
& \geqslant R^{2}-R \cdot 2|\xi| \cdot t-|\xi|^{2} t^{2} \\
& \geqslant R^{2}-2|\xi| R-|\xi|^{2}
\end{aligned}
$$

Hence, as $R \rightarrow \infty, \operatorname{Re}\left((R-i s t)^{2}\right) \rightarrow \infty$ uniformly in $t \in[0,1]$.

$$
\therefore \quad\left|\int_{R}^{R-i \xi} e^{-\pi u^{2}} d u\right| \rightarrow 0 \text { as } R \rightarrow \infty \text {. }
$$

