
Math 185: Homework 2 Solution

Instructor: Peng Zhou

The following exercises are from Stein’s textbook, Chapter 1, prob 25, and

Ch2: 1, 2,3,4

Problem (1.25). The next three calculations provide some insight into Cauchy’s
theorem, which we treat in the next chapter.

(a) Evaluate the integrals Z

�
zndz

where n 2 and � is any circle centers at the origin with the positive clockwise
orientation

(b) Same question as before, but with � any circle not containing the origin.
(c) Show that if |a| < r < |b|, then
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where � denotes the circle centered at the origin, of radius r, with the positive
orientation.

Solution. For (a), we can parameterize z = rei✓ for ✓ running from 0 to 2⇡.
Then
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Alternatively, for n 6= �1, we can find primitive of zn as zn+1/(n+ 1) over

C\{0}, then one can apply Corollary 3.2.

For (b), we parameterize the circle as z = z0 + rei✓ with |z0| > r. Then

again over the cirlce, for n 6= �1 we can find primitive of zn, hence the integral

is zero. Su�ce to consider the case n = �1, thus we have
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Since |z0| >, we can expand the integrand
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Now we are going to switch the order of summation and integration, again, we

check the absolute convergence, namely
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Finally, for (c). We can write
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and do integration for both terms. The first term is like (a) where the point a
is within the circle |z| = r, the second term is like (b) and contribution is zero.

The integral for the first term can be computered using power series again
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where when we switch the summation and integral, we again checked that the

double sum (more precisely, the integral-sum, is absolutely convergent, meaning

if we take the absolute value of the summand-integrand, the integral is still

finite).
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since St cost dr and f sin r dr are both real we

can compare the real and imaginary partsof the above equation
and get the desired result

Now we turn back to prove the claim
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In the following I will give 2 solutions using A or A
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