Stein ch 3 \# $9,12,16+2$ extra problems.
\#9. $\quad \int_{0}^{1} \log (\sin (\pi x)) d x=-\log 2$.

Pf: First, we check that the integral is well defined near $x=0$ and 1 , where $\sin (x) \rightarrow 0^{+}$. Indeed,

$$
\int_{0}^{1} \log x d x=\int_{\infty}^{1} \log \left(\frac{1}{u}\right) d\left(\frac{1}{u}\right)=-\int_{1}^{\infty} \frac{\log u}{u^{2}} d u
$$

which is convergent, since $\log u<C \cdot u^{\frac{1}{2}}$ for some $c>0$ and $\int_{1}^{\infty} \frac{u^{\frac{1}{2}}}{u^{2}} d u<\infty$ for any $u>1$.

$$
\begin{aligned}
I & =\lim _{\varepsilon \rightarrow 0} \int_{\varepsilon}^{1-\varepsilon} \log (\sin (\pi x)) d x \\
& =\lim _{\varepsilon \rightarrow 0} \int_{2}^{1-\varepsilon} \log \left(\frac{e^{\pi i x}-e^{-\pi i x}}{2 i}\right) d x
\end{aligned}
$$

For $x \in(\varepsilon, 1-\varepsilon)$, we may choose arg, s.t. numerator $\arg \left(e^{\pi i x}-e^{-\pi i x}\right)=\frac{\pi}{2}$
denominator. arg (i)

$$
=\frac{\pi}{2} .
$$

Thus

$$
\log \left(\frac{e^{\pi i x}-e^{-\pi i x}}{2 i}\right)=\log \left(e^{\pi i x}-e^{-\pi i x}\right)-\log (2 i)
$$

with the above choice of arg understood. Further more

$$
\begin{aligned}
\log \left(e^{\pi i x}-e^{-\pi i x}\right) & =\log e^{-\pi i x}\left(e^{2 \pi i x}-1\right) \\
& =\log e^{-\pi i x}+\log \left(e^{2 \pi i x}-1\right)
\end{aligned}
$$

with $\arg \left(e^{-\pi i x}\right) \in(0,-\pi)$ and $\quad \arg \left(e^{2 \pi i x}-1\right) \in\left(\frac{\pi}{2}, \frac{3}{2} \pi\right)$
when x varies in $(2,1-\varepsilon)$.

$$
\begin{aligned}
& \quad \int_{0}^{1}-\log (2 i) d x=-\pi i x+\log \left(e^{2 \pi i x}-1\right) . \\
& \left.\int_{0}^{1}-\pi i x d x=-\pi \log 2+\frac{\pi}{2} i\right] d x=-\left[\log 2+\frac{\pi i}{2}\right] \\
& \lim _{\varepsilon \rightarrow 0} \int_{\varepsilon}^{1-\varepsilon} \log \left(e^{2 \pi i x}-1\right) d x \\
& =\lim _{\varepsilon \rightarrow 0} \int_{\substack{z=e^{i 2 \pi \cdot x} \\
x \in\left(\varepsilon_{1}-\varepsilon\right)}} \log (z-1) \frac{d z}{2 \pi i \cdot z}
\end{aligned}
$$

- the added

$$
=\lim _{\varepsilon \rightarrow 0} \int_{\dot{\zeta}^{-}{ }^{1}} \log (z-1) \frac{d z}{2 \pi i \cdot z}
$$ small arc's contribution $\rightarrow 0$ as $\varepsilon \rightarrow 0$. by the estimate in the beginning.

$$
=\log (-1)=\pi i
$$

$\uparrow \because \arg (z-1)$ in this contour was chosen to be within $\left(\frac{\pi}{2}, \frac{3}{2} \pi\right)$.

Put these terms to gether, we get

$$
I=-\left(\log 2+\frac{\pi}{2} i\right)-\frac{\pi}{2} i+\pi i=-\log 2 .
$$

\# 12.
12. Suppose u is not an integer. Prove that

$$
\sum_{n=-\infty}^{\infty} \frac{1}{(u+n)^{2}}=\frac{\pi^{2}}{(\sin \pi u)^{2}}
$$

by integrating

$$
f(z)=\frac{\pi \cot \pi z}{(u+z)^{2}}
$$

over the circle $|z|=R_{N}=N+1 / 2$ (N integral, $N \geq|u|$), adding the residues of f inside the circle, and letting N tend to infinity.
Note. Two other derivations of this identity, using Fourier series, were given in Book I.

Let $I_{N}=\int_{|z|=R_{N}} \frac{\pi \cot (z)}{(u+z)^{2}} \frac{d z}{2 \pi i}$

$$
f(z)=\frac{\pi \cot (\pi z)}{(u+z)^{2}}=\frac{1}{(u+z)^{2}} \frac{\cos (\pi z)}{\sin (\pi z)}
$$

It has simple poles at $Z \in\{-N,-N+1, \cdots, N\}$ a double pole at $z=-u$.

$$
\begin{aligned}
& \operatorname{Res}_{z=n} f(z)=\frac{\pi}{(u+z)^{2}} \frac{\cos (n \pi)}{\left.\sin (z)^{\prime}\right|_{z=n}=\frac{1}{(u+n)^{2}}} \begin{aligned}
& \operatorname{Res}_{z=u} f(z)=\frac{\pi}{(u+z)^{2}}\left[\cot (\pi u)+(u+z) \frac{-\pi}{\sin ^{2}(\pi u)}+\cdots\right] \\
&\left.\cot ^{\prime}(x)=-\frac{1}{\sin ^{2}(x)}\right) \quad \begin{array}{l}
\text { coeff of }(u+z)^{-1} \\
\end{array} \quad \frac{-\pi^{2}}{\sin ^{2}(\pi u)} \\
& \text { Hence } \quad I_{N}=\sum_{n=-N}^{N} \frac{1}{(u+n)^{2}}+\frac{-\pi^{2}}{\sin ^{2}(\pi u)} .
\end{aligned} .
\end{aligned}
$$

Now, it suffices to prove that $\quad \lim _{N \rightarrow 0} I_{N} \rightarrow 0$.
We just need to show $\cot (\pi z)$ is bounded, when

$$
|z|=R_{N}=N+\frac{1}{2} . \quad \cot (\pi z)=\frac{e^{2 \pi i z}+1}{e^{2 \pi i z}-1} \cdot i
$$

For $\quad y>1, \quad\left|1-e^{2 \pi i(x+i y)}\right| \geqslant 1-e^{-2 \pi y}$

$$
\geqslant 1-e^{-2 \pi}
$$

For $0<y<1 . \quad\left|1-e^{2 \pi i(x+i y)}\right|$

$$
\begin{aligned}
& \geqslant \operatorname{Re}\left(1-e^{2 \pi i(x+i y)}\right) \\
& =1-e^{-2 \pi y} \cos (2 \pi x) \\
& =1-e^{-2 \pi y} \cos (2 \pi(x-R)+2 \pi R) \\
& =1+e^{-2 \pi y} \cos \left(2 \pi \frac{x^{2}-R^{2}}{x+R}\right) \\
& =\underbrace{1+e^{-2 \pi y} \cos \left(2 \pi \frac{-y^{2}}{x+R}\right.}_{n})
\end{aligned}
$$

we see $\left|1-e^{2 \pi i(x+i y)}\right|>1 \quad \forall 0<y<1$ for R_{N} sufficiently large.

$$
\cot (\pi z)=i \frac{1+e^{-2 \pi i z}}{1-e^{-2 \pi i z}}
$$

we get $\sup _{|z|=R_{N}}|\cot (\pi z)|$ is bounded from above by a constant C indep of N.

Finally:

$$
\begin{aligned}
& \lim _{N \rightarrow \infty}\left|\oint \frac{1}{(u+z)^{2}} \cot (\pi z) d z\right| \\
& \leqslant \lim _{R \rightarrow \infty} \frac{1}{R^{2}} \cdot 2 \pi R \cdot M=0
\end{aligned}
$$

Thus $\quad \lim _{N \rightarrow \infty} I_{N}=0$.
16. Suppose f and g are holomorphic in a region containing the disc $|z| \leq 1$.
\#16 Let.

$$
f_{\epsilon}(z)=f(z)+\epsilon g(z)
$$

Show that if ϵ is sufficiently small, then
(a) $f_{\epsilon}(z)$ has a unique zero in $|z| \leq 1$, and
(b) if z_{ϵ} is this zero, the mapping $\epsilon \mapsto z_{\epsilon}$ is continuous.
if (a) follows from Douche the
(b). Suppose $\varepsilon_{0} \geq 0$ is small enough, such that
$\forall \varepsilon \in \mathbb{C}, \quad 0 \leqslant|\varepsilon|<\varepsilon$ o, $\quad f_{\varepsilon}(z)$ has unique zero $z \varepsilon$ inside $|z| \leqslant 1$. and $\left|z_{\varepsilon}\right|<1$. Then.,

Hence $\frac{1}{2 \pi i} \int_{C}\left(\frac{1}{z-z_{\varepsilon}}+h_{0} l^{\prime} c\right) \cdot z d z=z_{\varepsilon}$.
indeed. $\quad \frac{f_{\varepsilon}^{\prime}(z)}{f_{\varepsilon}(z)}=\left(\frac{1}{z-z_{\varepsilon}}+h_{0} l^{\prime} c\right.$ part $)$.

Since the integrand $\frac{f_{\varepsilon}^{\prime}(z)}{f_{\varepsilon}(z)}, Z$ is continuous
in ε., for $|\Sigma|<\varepsilon_{0}$, and domain C is compact, heme He integrand is uniformly continuous in \mathcal{E}. Thus the result of the integral is continuous in \mathcal{C}.
actually, the integrand is hol'c in ε, and Z_{ε} is hol'c in ε for $|\varepsilon|<\varepsilon_{0}$
4. How many rooks does $z^{4}-6 z+3=0$ have on the annulus $1<|z|<2$?

Ans: we will count roots inside $|z|<2$ and $|z|<1$. For $|z|<2$, we let $f(z)=z^{4}, \quad g(z)=-6 z+3$. Then on $|z|=2,|f(z)|=16,|g(z)| \leq|-6 z|+3=15$., hame. $f(z)+g(z)$ has the same number of roots as $f(t)$ inside $|z|=2$. namely 4 .

For $|z|<1$, let $f(z)=-6 z, \quad g(z)=z^{4}+3$, then on (z), $|f(z)|=6, \quad|g(z)| \leq 4$. we have number of nooks of $f+g$ equal to that of f inside $|z|=1$, namely 1 .

Heme, \# of roots of $z^{4}-6 z+1$ has $4-1=3$ roots in the annulus $1<|z|<2$.
\#5: Are the following open maps?

1) $f: \mathbb{C} \rightarrow \mathbb{C}, \quad f(z)=\bar{z}$.
yes, since complex conjugation is a linear isomorphism hence is open.
2) $f: \quad \mathbb{C} \rightarrow \mathbb{R}, \quad f(z)=|z|^{2}$. Not open. for any open ball $\operatorname{Br}(0)$,
$f(\operatorname{Br}(\omega))=\left[\overline{0}, \gamma^{2}\right)$, which is not open.
3) $f: \mathbb{C} \rightarrow \mathbb{R}$. $\quad f(x+i y)=x \cdot y$.
yes. $f(z)=\operatorname{Im}\left(z^{2} / 2\right)$, hence f is a composition of a holomorphic map $\mathbb{C} \rightarrow \mathbb{C}$, with a projection $\mathbb{C} \rightarrow \mathbb{R}$, both are open map, hence f is open
4) $f: \mathbb{C} \rightarrow \mathbb{R} \quad f(z)=\operatorname{Re}\left(z^{3}+2 z\right)$.
open. same reason as 3).
