Stein ch 4. 3, 4.6.8. 9(a)
\#3 Show by contour integral, that if $a>0, \xi \in \mathbb{R}$, we have

$$
\frac{1}{\pi} \int_{-\infty}^{+\infty} \frac{a}{a^{2}+x^{2}} e^{-2 \pi i x \xi} d x=e^{-2 \pi a|\xi|}
$$

and that

$$
\int_{-\infty}^{+\infty} e^{-2 \pi a|\xi|} e^{2 \pi i x \xi} d \xi=\frac{1}{\pi} \frac{a^{2}}{a^{2}+x^{2}}
$$

Solon: (a) if $\xi \geqslant 0$, we can complete the contour by since $\operatorname{Re}(-2 \pi i \cdot z \cdot \xi)=\operatorname{Im}(2 \pi z \xi)=2 \pi \xi \operatorname{Im}(z) \rightarrow-\infty$ as $\operatorname{Im}(z) \rightarrow-\infty$.
we get $\int_{\pi\left(a^{2}+z^{2}\right)} e^{-2 \pi i \cdot z \cdot \xi} \cdot d z$

$$
\begin{aligned}
& =-2 \pi i \cdot \operatorname{Re}_{z=-a i} \frac{a}{\pi\left(a^{2}+z^{2}\right)} e^{-2 \pi i z \cdot \xi} \\
& =-2 \pi i \frac{a}{\pi(-2 a i)} \cdot e^{-2 \pi a \xi}=e^{-2 \pi a|\xi|}
\end{aligned}
$$

Similarly, if $\xi \leq 0$, we may complete the contour

$$
\begin{aligned}
& f_{0} \frac{1}{\pi} \frac{a}{a^{2}+z^{2}} e^{-2 \pi i \cdot z \cdot \xi} d z=2 \pi i \cdot \operatorname{Res}_{z=a i} \frac{e^{-2 \pi i \cdot z \cdot \xi} \cdot a}{\left(a^{2}+z^{2}\right) \pi} \\
& \quad=2 \pi i \cdot \frac{a}{\pi} \cdot \frac{e^{2 \pi a \xi}}{2 a i}=e^{-2 \pi a|\xi|}
\end{aligned}
$$

Hence, for all $\xi \in \mathbb{R}$, we get $e^{-2 \pi a l s \mid \text {. }}$

$$
\begin{aligned}
& \text { (b) } \int_{-\infty}^{+\infty} e^{-2 \pi a|\xi|} e^{2 \pi i x \cdot \xi} d \xi \\
& =\int_{0}^{\infty} e^{-2 \pi a \xi+2 \pi i x \xi} d \xi+\int_{-\infty}^{0} e^{2 \pi a \xi+2 \pi i \cdot x \xi} d \xi \\
& =\int_{0}^{\infty} e^{-2 \pi(a-i x) \xi} d \xi+\int_{0}^{\infty} e^{-2 \pi(a+i x) \cdot \rho} d \rho \\
& =\frac{1}{2 \pi(a-i x)}+\frac{1}{2 \pi(a+i x)}=\frac{1}{2 \pi} \frac{(a+i x)+(a-i x)}{a^{2}+x^{2}} \\
& =\frac{a}{\pi} \frac{1}{a^{2}+x^{2}}
\end{aligned}
$$

\#4: Suppose Q is a polynomial of degree $\geqslant 2$., with distinct roots, none lying on the real axis. Calculate

$$
I=\int_{-\infty}^{+\infty} \frac{e^{-2 \pi i x \xi}}{Q(x)} d x
$$

in terms of the roots. What if the roots have multiplicities?

Sol'n: Let R_{+}denote the set of roots of $Q(x)$ with $I_{m}>0$ and R - the set of roots with $I_{m}<0 . \quad R=R_{+} \cup R$ -

- If $\xi>0$, we may complete the contour as

$$
I=-2 \pi i \sum_{a \in R_{-}} \operatorname{Res}_{z=a} \frac{e^{-2 \pi i \cdot z \cdot \xi}}{Q(z)}=-2 \pi i \sum_{a \in R_{-}} \frac{e^{-2 \pi i \cdot a \cdot \xi}}{Q^{\prime}(a)}
$$

- If $s<0$. then

$$
I=2 \pi i \sum_{a \in R_{+}} \operatorname{Res}_{z=a} \frac{e^{-2 \pi i z \xi}}{Q(z)}=2 \pi i \sum_{a \in R_{+}} \frac{e^{-2 \pi i \cdot a \cdot \xi}}{Q^{\prime}(a)}
$$

- If $\xi=0$, then we can use either contour, and get

$$
I=2 \pi i \cdot \sum_{a \in R_{+}} \frac{1}{Q^{\prime}(a)}=-2 \pi i \sum_{a \in R_{-}} \frac{1}{Q^{\prime}(a)}
$$

Indeed

$$
\sum_{a \in R_{+} \cup R_{-}} \frac{1}{Q^{\prime}(a)}=\oint_{|z|=R>1} \frac{1}{Q(z)} \frac{d z}{2 \pi i}=0 .
$$

Hence the above 2 expressions for I agree.

- In above expressions,

$$
\begin{aligned}
& Q(z)=c \cdot \prod_{a \in R}(z-a) \quad \text { for some } c \in \mathbb{C}^{*} \\
& Q^{\prime}(a)=c \prod_{\substack{b \in R \\
b \neq a}}(a-b)
\end{aligned}
$$

- Now, what if roots of $Q(x)$ coincides $\left(\begin{array}{l}\text { this part is } \\ \text { optional, and doesn't } \\ \text { count into the grade }\end{array}\right)$

Consider a simple example, say $\operatorname{Im}\left(a_{i}\right)>0$
(*) $\int_{-\infty}^{+\infty} \frac{e^{-2 \pi i z \cdot \xi}}{\left(z-a_{1}\right)\left(z-a_{2}\right)} d z=2 \pi i \cdot\left(\frac{e^{-2 \pi i \cdot a_{1} \xi}}{a_{1}-a_{2}}+\frac{e^{-2 \pi i \cdot a_{2} \cdot \xi}}{a_{2}-a_{1}}\right)$
$(* *)<\frac{e^{-2 \pi i z \cdot \xi}}{\left(z-a_{1}\right) \cdots\left(z-a_{3}\right)} d z=2 \pi i \cdot\left(\frac{e^{-2 \pi i a_{1} \xi}}{\left(a_{1}-a_{2}\right)\left(a_{1}-a_{3}\right)}+\frac{e^{-2 \pi i \cdot a_{2} \cdot \xi}}{\left(a_{2}-a_{1}\right)\left(a_{2}-a_{3}\right)}\right.$

$$
\left.+\frac{e^{-2 \pi i \cdot a_{3} \cdot \xi}}{\left(a_{3}-a_{1}\right)\left(a_{3}-a_{2}\right)}\right)
$$

For (*), we may take limit $a_{1} \rightarrow a, a_{2}=a$, we get

$$
\begin{aligned}
& \text { RUS }\left.\rightarrow 2 \pi i \cdot\left(e^{-2 \pi i \cdot z \cdot \xi}\right)^{\prime}\right|_{z=a}=2 \pi i(-2 \pi i \xi) e^{-2 \pi i \cdot a \xi} \\
& \text { LHS } \rightarrow 2 \pi i \operatorname{Res}_{z=a} \frac{e^{-2 \pi i z \xi}}{(z-a)^{2}}=2 \pi i(-2 \pi i \xi) e^{-2 \pi i \cdot a \xi}
\end{aligned}
$$

For (**).
its interesting to notice that, on the LHS, converges to

$$
2 \pi i \cdot \frac{\left.\left(e^{-2 \pi i \cdot z \cdot \xi}\right)^{\prime \prime}\right|_{z=a}}{2!}
$$

on the RHS, we need to use some trick to see this.
say $a_{i} \rightarrow a$. let $f(z)=e^{-2 \pi i \cdot z \cdot \xi}$.
Then $f\left(a_{i}\right)=f(a)+\left(a_{i}-a\right) f^{\prime}(a)+\frac{1}{2!}\left(a_{i}-a\right)^{2} f^{\prime \prime}(a)+\cdots$
we note $\sum_{i=1}^{3}\left(\prod_{j \neq i} \frac{1}{\left(a_{i}-a_{j}\right)}\right)=\oint \frac{z}{\left(z-a_{1}\right)\left(z-a_{2}\right)\left(z-a_{3}\right)} \frac{d z}{2 \pi i}=0$

$$
\begin{aligned}
\sum_{i=1}^{3}\left(\prod_{j \neq i} \frac{1}{\left(a_{i}-a_{j}\right)}\right) \cdot a_{i} & =\oint_{|z|=R>1} \frac{z}{\left(z-a_{1}\right)\left(z-a_{2}\right)\left(z-a_{3}\right)} \frac{d z}{2 \pi i}=0 \\
\sum_{i=1}^{3}\left(\prod_{j \neq i} \frac{1}{\left(a_{i}-a_{j}\right)}\right) \cdot a_{i}^{2} & =\oint_{|z|=R>1} \frac{z^{2}}{\left(z-a_{1}\right)\left(z-a_{2}\right)\left(z-a_{3}\right)} \frac{d z}{2 \pi i} \\
& =\oint_{|z|}\left(\frac{1}{z}+\frac{\#}{z^{2}}+\frac{\#}{z^{3}} \cdots\right) \frac{d z}{2 \pi i} \\
& =1
\end{aligned}
$$

Thus $\left(\lim _{a_{i} \rightarrow a} \sum_{i=1}^{3} \frac{f\left(a_{i}\right)}{\prod_{j \neq i}\left(a_{i}-a_{j}\right)}\right)$

$$
\begin{aligned}
& =\lim _{a_{i} \rightarrow a} \sum_{i=1}^{3} \frac{f(a)+\left(a_{i}-a\right) f^{\prime}(a)+\frac{1}{2}\left(a_{i}-a\right)^{2} f^{\prime \prime}(a)+O\left(k_{i}-\left.a\right|^{3}\right)}{\prod_{j \neq i}\left(a_{i}-a_{j}\right)} \\
& =\lim _{a_{i} \rightarrow a}\left[\frac{1}{2} f^{\prime \prime}(a)\right]+\sum_{i=1}^{3} \frac{O\left(\left|a_{i}-a\right|^{3}\right)}{\prod_{j \neq i}\left(a_{i}-a_{j}\right)} \\
& =\frac{1}{2} f^{\prime \prime}(a) .
\end{aligned}
$$

\#6 Prove that

$$
\frac{1}{\pi} \sum_{n=-\infty}^{+\infty} \frac{a}{a^{2}+n^{2}}=\sum_{n=-\infty}^{+\infty} e^{-2 \pi a|n|}
$$

wherever $a>0$
Pf: This follows from Poisson summation formula. (for $a>0$)

$$
f(x)=\frac{1}{\pi} \frac{a^{2}}{a^{2}+x^{2}} \quad \stackrel{F \cdot T}{\longleftrightarrow} \hat{f}(\xi)=e^{-2 \pi a|\xi|}
$$

Now

$$
\begin{aligned}
\operatorname{coth}(\pi a) & =\frac{e^{\pi a}+e^{-\pi a}}{e^{\pi a}-e^{-\pi a}}=\frac{1+e^{-2 \pi a}}{1-e^{-2 \pi a}} \\
& =\left(1+e^{-2 \pi a}\right)\left(\sum_{n=0}^{\infty} e^{-2 \pi a \cdot n}\right) \\
& =\sum_{n \in z} e^{-2 \pi a|n|}
\end{aligned}
$$

\#8 Suppose \hat{f} is supported in $[-M, M]$. Let $f(z)=\sum_{n=0}^{\infty} a_{n} Z^{n}$.
Show the

$$
a_{n}=\frac{(2 \pi i)^{n}}{n!} \int_{-M}^{M} \hat{f}(\xi) \cdot \xi^{n} d \xi
$$

and

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left(n!\left|a_{n}\right|\right)^{\frac{1}{n}} \leq 2 \pi M \tag{**}
\end{equation*}
$$

Coverall, if $\left(*^{*}\right)$ holds, show that $f(t)$ is hol'c in \mathbb{C}.

$$
\begin{aligned}
& \forall \varepsilon>0, \quad \exists A_{\varepsilon}>0 . \text { s.t. } \\
& \qquad|f(z)| \leqslant A_{\varepsilon} e^{2 \pi(M+\varepsilon)|z| .}
\end{aligned}
$$

Pf: (1)

$$
\begin{aligned}
a_{n} & =f^{(n)}(0) \cdot \frac{1}{n!} \\
& =\frac{1}{n!}\left(\frac{d}{d z}\right)^{n} \int_{-M}^{M} \hat{f}(\xi) e^{2 \pi i \cdot z \cdot \xi} d \xi \\
& =\frac{1}{n!} \int_{-M}^{M} \hat{f}(\xi) \cdot\left(\frac{d}{d z}\right)^{n} e^{2 \pi i z \cdot \xi} d \xi \\
\because \begin{array}{l}
\text { absolute. } \\
\text { convuergeme } \\
\text { of } \int \frac{d}{d n} \tilde{z}(\cdots)
\end{array} & =\frac{1}{n!} \int_{-M}^{M} \hat{f}(\xi)(2 \pi i \cdot \xi)^{n} d \xi \\
& =\frac{(2 \pi i)^{n}}{n!} \int_{-M}^{M} \hat{f}(\xi) \xi^{n} d \xi .
\end{aligned}
$$

Hence $\limsup _{n \rightarrow \infty}\left(n!\left|a_{n}\right|\right)^{\frac{1}{n}}$

$$
\begin{aligned}
& =\limsup _{n \rightarrow \infty}(2 \pi) \cdot\left(\int_{-M}^{M} \hat{f}(\xi) \cdot \xi^{n} d \xi\right)^{\frac{1}{n}} \\
& \leqslant \limsup _{n \rightarrow \infty}(2 \pi) \cdot\left(\sup _{\xi \in\left[m_{m}\right.}|\hat{f}(\xi)|\right)^{\frac{1}{n}} \cdot\left[\frac{M^{n+1}}{n+1}-\frac{(-M)^{n+1}}{n+1}\right]^{\frac{1}{n}} \\
& =2 \pi \cdot M . \quad\left(\because \lim _{n \rightarrow \infty} c^{\frac{1}{n}}=1, \forall c>0 .\right)
\end{aligned}
$$

(b) For the converse direction:
$\forall \varepsilon>0$, let $N_{\varepsilon}>0$ s.t. we have

$$
\left(n!\left|a_{n}\right|\right)^{\frac{1}{n}}<2 \pi(M+\varepsilon) \quad \forall n \geqslant N_{\varepsilon}
$$

Thus

$$
\begin{aligned}
\sum_{n=N_{\varepsilon}}^{\infty}\left|a_{n}\right| \cdot \mid z^{n} & \leqslant \sum_{n=N_{\varepsilon}}^{\infty} \frac{(2 \pi(M+\varepsilon))^{n}}{n!} \cdot|z|^{n} \\
& \leqslant e^{2 \pi(M+\varepsilon)|z|}
\end{aligned}
$$

Now $\frac{\sum_{n=0}^{N_{s}-1}\left|a_{n}\right||z|^{n}}{e^{2 \pi(M+\varepsilon)|z|}}$ is bounded at $|z| \rightarrow \infty$
hence let $A_{\varepsilon}^{\prime}=\sup _{|z| \in \mathbb{C}} \frac{\sum_{n=0}^{N_{s}-1}\left|a_{n}\right||z|^{n}}{e^{2 \pi(M+\varepsilon)|z|}}$ let $A_{\varepsilon}=1+A_{\varepsilon}^{\prime}$.

Then

$$
\begin{aligned}
& |f(z)| \leqslant \sum_{n=0}^{\infty}\left|a_{n}\right| \cdot|z|^{n} \\
= & \sum_{n=0}^{N \varepsilon^{-1}}\left|a_{n}\right| \cdot|z|^{n}+\sum_{N \varepsilon}^{\infty}\left|a_{n}\right| \cdot\left|z^{n}\right| \\
\leqslant & A_{\varepsilon}^{\prime} \cdot e^{2 \pi(n+\varepsilon)|z|}+1 \cdot e^{2 \pi(n+\varepsilon)|z|} \\
= & A_{\varepsilon} e^{2 \pi(n+\varepsilon) \mid z)^{2}}
\end{aligned}
$$

\#9 (a) : Let $F(z)$ be a hol'c f cu on the right half plane. continuous on the boundary:

Suppose $\quad|F(i y)| \leqslant 1 \quad \forall y \in \mathbb{R}$
and

$$
|F(z)| \leq A e^{B|z|^{\gamma}} \quad \text { for } 0<\gamma<1
$$

Then., show $|F(z)| \leq 1$.

Pf: let $r<P<1$, then $\forall \varepsilon>0$, let

$$
F_{\varepsilon}(z):=F(z) \cdot e^{-\varepsilon z^{p}}
$$

then $F_{\varepsilon}(z)$ is still hol'c on the right half plane.

$$
\left|F_{\varepsilon}(z)\right|=|F(z)| \cdot e^{-\varepsilon \gamma \cos (p \theta)} \quad z=-e^{i \theta}
$$

$$
\begin{aligned}
& \leqslant A e^{B s^{\gamma}-\varepsilon \cdot s^{p} \cos (p \theta)} \\
& \quad \inf _{\theta \in\left(\frac{\pi}{2},-\frac{\pi}{2}\right)} \cos (p \theta)=C>0, \text { then } \\
& \leqslant
\end{aligned} \quad A e^{-\varepsilon c \cdot s^{p}+B s^{\gamma}}
$$

As $s \rightarrow+\infty$. the above bound $\rightarrow 0$.

Hence $\quad\left|F_{\varepsilon}(t)\right| \rightarrow 0$ as $|z| \rightarrow \infty$ in the right half plane.

Rest of the proof is the same as in the book.

