Game lin ${ }_{3}{ }^{\text {Pb }} \# 1.10 .14$. Stein \#3, \#4 (a)

1. Evaluate the following:

$$
\begin{aligned}
-\quad \prod_{n=1}^{\infty} & \left(1+\frac{1}{n(n+2)}\right)=\prod_{n=1}^{\infty} \frac{n^{2}+2 n+1}{n(n+2)}=\frac{2^{2}}{1 \cdot 3} \cdot \frac{3^{2}}{2 \cdot 4} \cdot \frac{4^{2}}{3 \cdot 5} \cdots \\
& =2
\end{aligned}
$$

(we need to first observe that, since $\sum \frac{1}{n(n+2)}<\infty$, hence this product is convergent. thus we can do all these manipulations)

$$
\begin{aligned}
& \therefore \quad \prod_{n=2}^{\infty}\left(1-\frac{1}{n^{2}}\right)=\prod_{n=2}^{\infty} \frac{n^{2}-1}{n^{2}}=\prod_{n=2}^{\infty} \frac{(n-1)(n+1)}{n^{2}} \\
& =\frac{1 \cdot 3}{2^{2}} \cdot \frac{2 \cdot 4}{3^{2}} \cdot \cdots=\frac{1}{2} \\
& \cdot \prod_{n=3}^{\infty} \frac{n^{2}-1}{n^{2}-4}=\prod_{n=3}^{\infty} \frac{(n-1)(n+1)}{(n-2)(n+2)}=\frac{2 \cdot(4)}{1 \cdot \underline{5}} \cdot \frac{3 \cdot 5}{2 \cdot 6} \cdot \frac{4 \cdot 6}{3 \cdot 7} \cdots \\
& \quad=4
\end{aligned}
$$

\#10 show that

$$
\prod_{n=0}^{\infty}\left(1+z^{2^{n}}\right)=\frac{1}{1-z} \quad \text { for }|z|<1
$$

First, we observe that for $|z|<1$,

$$
\sum|z|^{2^{n}}<\sum|z|^{n}<\infty
$$

Hence the product converges.

Next, we only need to show that

$$
(1-z)(1+z)\left(1+z^{2}\right)\left(1+z^{4}\right) \cdots=1
$$

Indeed,

$$
\begin{aligned}
& (1-z)(1+z)=1-z^{2} \\
& \left(1-z^{2}\right)\left(1+z^{2}\right)=1-z^{4}
\end{aligned}
$$

More precisely, we may define

$$
F_{N}=\prod_{n=0}^{N}\left(1+z^{2^{n}}\right)
$$

then $(1-z) F_{N}=1-z^{z^{N+1}}$, hence.

$$
\left|F_{N}(z)-\frac{1}{1-z}\right|=\left|\frac{1-z^{2^{N+1}}}{1-z}-\frac{1}{1-z}\right|=\frac{|z|^{2^{N+1}}}{|1-z|}
$$

For fixed $|z|<1$, we have $\lim _{N \rightarrow \infty}\left|F_{N}(z)-\frac{1}{1-z}\right|=0$.
\#14: Show that for $t>0$, we have

$$
\lim _{m \rightarrow \infty} \prod_{\substack{-m<k<t m \\ k \neq 0}}\left(1+\frac{z}{k}\right) \rightarrow \frac{\sin (\hbar z)}{\pi z} \cdot t^{z}
$$

Pf : Let $P_{L}(z)=\lim _{m \rightarrow \infty} \prod_{\substack{k<t m \\-m \neq 0}}\left(1+\frac{z}{k}\right)$

$$
P_{R}(z)=\sin (\pi z) / \pi z .
$$

First, we need to show that the limit in the definition for $P_{L}(z)$ exists. We may consider

$$
F_{m}(z):=\prod_{m \leq k<t m}\left(1+\frac{z}{k}\right)
$$

then $\log F_{m}(z)=\sum_{m \leq k<t m} \log \left(1+\frac{z}{k}\right)$

$$
=\sum_{m \leq k<t m}^{m \leq k<m}\left(\frac{z}{k}+R_{k}(z)\right)
$$

we claim that

$$
\lim _{m \rightarrow \infty} \sum_{m \leq k<t m} R_{k}(z)=0
$$

Indeed, $\left|R_{k}(z)\right|=\left(\log \left(1+\frac{z}{k}\right)-\left.\frac{z^{k}}{k}|\leqslant C \cdot| \frac{z}{k}\right|^{2}\right.$ for some $c>0$ and for $\left|\frac{z}{k}\right|<\frac{1}{2}$.

Thus $\sum_{m \leq k<t m} \frac{|z|^{2}}{k^{2}} \rightarrow 0$ as $m \rightarrow \infty$, by Cauchy condition on the convergeme of $\sum_{k=1}^{\infty} \frac{1}{k^{2}}$.

Then $\sum_{m \leq k<t m} \frac{1}{k}=\sum_{m \leq k<t m} \frac{1}{k / m} \cdot \frac{1}{m} \xrightarrow{m \rightarrow \infty} \int_{x=1}^{t} \frac{1}{x} d x=\log t$
limit of the
This is because the sum is the Riemann integral.
Thus, we have $\lim _{m \rightarrow \infty} F_{m}(z)=e^{\lim _{m \rightarrow \infty} \log F_{m}(z)}=e^{z \cdot \log t}=t^{z}$.

Stein \#3 Show that, if τ is fixed with $\operatorname{Im}(\tau)>0$, then the Jacobi θ-function

$$
\theta(z \mid \tau):=\sum_{n \in \mathbb{Z}} e^{\pi i n^{2} \tau} \cdot e^{2 \pi i \cdot n z}
$$

has order of growth $=2$
Pf: we note that

$$
\begin{aligned}
\theta(z+1) & =\theta(z) \\
\theta(z+\tau) & =\sum_{n} e^{\pi i \tau\left[n^{2}+2 n\right]} \cdot e^{2 \pi i n z} \\
& =e^{-\pi i \tau} \sum_{n} e^{\pi i \tau \cdot(n+1)^{2}+2 \pi i n z} \\
& =e^{-\pi i \tau-2 \pi i z} \theta(z)
\end{aligned}
$$

Hence $\quad|\theta(z+\tau)|=\left|e^{-\pi i t-2 \pi i z}\right| \cdot|\theta(z)|$

$$
=e^{\pi \cdot \operatorname{Im}(\tau)+2 \pi \cdot \operatorname{Im}(z)} \cdot|\theta(z)|
$$

In fact,

$$
\begin{aligned}
\theta(z+k \tau) & =\sum_{n} e^{\pi i \tau \cdot n^{2}+2 \pi i n(z+k \tau)} \\
& =\sum_{n} e^{\pi i \tau\left(n^{2}+2 n k+k^{2}-k^{2}\right)+2 \pi i(n) z} \\
& =e^{-\pi i \tau \cdot k^{2}-2 \pi i k z} \cdot \theta(z) .
\end{aligned}
$$

Let $F=[0,1]+[0,1] \cdot \tau \subset \mathbb{C}$

Let $M=\sup _{z \in F}|\theta(z)|$

Then for any $z \in F, \forall \alpha, \beta \in \mathbb{Z}$, we have

$$
\begin{aligned}
\sup _{z \in F}|\theta(z+\alpha+\beta \tau)| & =\sup _{z \in F}|\theta(z+\beta \tau)|=\sup _{z \in F}\left[|\theta(z)| \cdot e^{\pi \beta^{2} \operatorname{Im}(\tau)}\right. \\
& \left.\leq M \cdot e^{\pi \beta^{2} \operatorname{Im}(\tau)+2 \pi \beta \operatorname{Im}(\tau)} \cdot e^{2 \pi \cdot \operatorname{Im}(z)}\right] \\
& \leq A e^{B \cdot \beta^{2} \quad \text { for some } A, B>0 .}
\end{aligned}
$$

We note that $\quad \forall a, b \in \mathbb{R}$

$$
\begin{aligned}
|a+b \tau|^{2} & =(a+b \cdot \operatorname{Re} \tau)^{2}+(b \cdot \operatorname{Im} \tau)^{2} \\
& \geqslant b^{2} \cdot(\operatorname{Im} \tau)^{2}
\end{aligned}
$$

Heme, for $z=a+b \tau, \quad a \in[0,1], b \in[0,1]$,

$$
\begin{gathered}
|z+\alpha+\beta \tau|^{2} \geqslant(b+\beta)^{2} \cdot(\operatorname{Im} \tau)^{2} \\
|\beta|^{2} \leqslant \frac{1}{\operatorname{Im}(\tau)^{2}}|z+\alpha+\beta \tau|^{2}+C .
\end{gathered}
$$

Thus $\quad \begin{aligned} \quad \sup |\theta(z)| & \leqslant A e^{B|\beta|^{2}}\end{aligned} \leqslant A e^{B\left(\frac{1}{\sum_{n}+\sigma^{2}|z|^{2}}+C\right)}$
since A^{\prime}, B^{\prime} are independent of α, β. We have

$$
|\theta(z)| \leqslant A^{\prime} \cdot e^{B^{\prime}|z|^{2}} \quad \forall z .
$$

Stein \#4 (a)

$$
\text { Let } F(z)=\prod_{n=1}\left(1-e^{-2 \pi n t} \cdot e^{2 \pi i z}\right), \quad t>0
$$

Show that

$$
|F(z)| \leqslant A \cdot e^{B|z|^{2}} \quad \text { for some } A, B>0 \text {. }
$$

f:
[Hint: To prove (a), write $F(z)=F_{1}(z) F_{2}(z)$ where

$$
F_{1}(z)=\prod_{n=1}^{N}\left(1-e^{-2 \pi n t} e^{2 \pi i z}\right) \quad \text { and } \quad F_{2}(z)=\prod_{n=N+1}^{\infty}\left(1-e^{-2 \pi n t} e^{2 \pi i z}\right)
$$

Choose $N \approx c|z|$ with c appropriately large. Then, since

$$
\left(\sum_{N+1}^{\infty} e^{-2 \pi n t}\right) e^{2 \pi|z|} \leq 1
$$

one has $\left|F_{2}(z)\right| \leq A$. However,

$$
\left|1-e^{-2 \pi n t} e^{2 \pi i z}\right| \leq 1+e^{2 \pi|z|} \leq 2 e^{2 \pi|z|}
$$

Thus $\left|F_{1}(z)\right| \leq 2^{N} e^{2 \pi N|z|} \leq e^{c^{\prime}|z|^{2}}$. Note that a simple variant of the function F arises as a factor in the triple product formula for the Jacobi theta function Θ, taken up in Chapter 10.]

We fill in the detail of the hint.
Let $c=\frac{1}{t}$, and fix some $\quad N>c|z|$. then.

$$
\begin{aligned}
\left|F_{2}(z)\right| & \leqslant \prod_{n=N+1}^{\infty}\left(1+e^{-2 \pi n t} \cdot e^{2 \pi|z|}\right) \\
& \leqslant e^{\sum_{n=N+1}^{\infty} e^{-2 \pi n t+2 \pi|z|}} \\
& =e^{e^{-2 \pi(N+1) t+2 \pi|z|} \cdot \sum_{n=0}^{\infty} e^{-2 \pi n t}} \\
& \leqslant e^{\sum_{n=0}^{\infty} e^{-2 \pi n t}}=e^{\frac{1}{1-e^{-2 \pi t}}}
\end{aligned}
$$

$$
\begin{aligned}
\left|F_{1}(z)\right| & \leqslant \prod_{n=1}^{N}\left|1-e^{-2 \pi n t} \cdot e^{2 \pi i z}\right| \\
& \leqslant \prod_{n=1}^{N}\left(1+\left|e^{-2 \pi n t} \cdot e^{2 \pi i z}\right|\right) \\
& \leqslant \prod_{n=1}^{N}\left(1+e^{2 \pi|z|}\right) \\
& \leqslant \prod_{n=1}^{N}\left(2 e^{2 \pi|z|}\right) \\
& =2^{N} e^{2 \pi|z| \cdot N} \\
& \leqslant e^{c_{1}|z|^{2}+c_{2}|z|} \leqslant e^{c_{3}|z|^{2}}
\end{aligned}
$$

