Gamelin XIII. 3 \#15, \#16 (a) (b), XII. 4 \#2,5
\#15 Show that $\frac{1}{z} \prod_{n=1}^{\infty} \frac{n}{z+n}\left(\frac{n+1}{n}\right)^{z}$ converges to a meromorphic function whose pole at $0,-1,-2, \ldots$

Show that

$$
\Gamma(z)=\lim _{m \rightarrow \infty} \frac{(m-1)!}{z(z+1) \cdots(z+m-1)} \cdot m^{z}
$$

Show the t

$$
\Gamma(z+1)=z \Gamma(z)
$$

Pf: (1) $\prod_{n=1}^{\infty} \frac{n}{z+n}\left(\frac{n+1}{n}\right)^{z}=\prod_{n=1}^{\infty}\left(\frac{1}{1+\frac{z}{n}}\right) \cdot e^{z \cdot \log \left(\frac{n+1}{n}\right)}$

$$
\begin{aligned}
&= \prod_{n=1}^{\infty} e^{-\log \left(1+\frac{z}{n}\right)+z \log \left(1+\frac{1}{n}\right)} \\
& \underline{\text { claim }}= \sum_{\sum_{n=1}^{\infty}}^{i f z-z}\left|\frac{z}{n}-\log \left(1+\frac{z}{n}\right)\right|<\infty \\
& \text { (2) } \sum_{n=1}^{\infty}\left|-\frac{z}{n}+z \log \left(1+\frac{1}{n}\right)\right|<\infty
\end{aligned}
$$

(1) choose n_{0} large enough, such that $\left|\frac{z}{n_{0}}\right|<\frac{1}{2}$.

Then for any $n \geqslant n_{0}$, we have

$$
\begin{aligned}
& \quad\left|\log \left(1+\frac{z}{n}\right)-\frac{z}{n}\right|=\left|\sum_{k=2}^{\infty}\left(\frac{z}{n}\right)^{k} / k\right| \\
& \leqslant\left|\frac{z}{n}\right|^{2} \cdot \sum_{k=2}^{\infty}\left|\frac{1}{2}\right|^{k-2} \cdot \frac{1}{k} \leqslant\left|\frac{z}{n}\right|^{2} \cdot \sum_{j=0}^{\infty}\left|\frac{1}{2}\right|^{j} \leqslant 2 \cdot\left|\frac{z}{n}\right|^{2}
\end{aligned}
$$

Thus $\quad \sum_{n=1}^{\infty}\left|\frac{z}{n}-\log \left(1+\frac{z}{n}\right)\right|$

$$
\begin{aligned}
& =\sum_{n=1}^{n_{0}-1}\left|\frac{z}{n}-\log \left(1+\frac{z}{n}\right)\right|+\sum_{n=n_{0}}^{\infty}\left|\frac{z}{n}-\log \left(1+\frac{z}{n}\right)\right| \\
& \leq \underbrace{\sum_{n=1}^{n_{0}-1}\left|\frac{z}{n}-\log \left(1+\frac{z}{n}\right)\right|}_{\begin{array}{c}
\text { finitely many } \\
\text { terms. }
\end{array}}+\underbrace{\sum_{n=n_{0}}^{\infty} 2 \cdot\left|\frac{z}{n}\right|^{2}}_{<2\left|z^{2}\right|} \sum_{n=1}^{\infty} \frac{1}{n^{2}}<\infty \\
& <\infty \\
& \text { (3) } \sum_{n=1}^{\infty}\left|-\frac{z}{n}+z \log \left(1+\frac{1}{n}\right)\right|=|z| \cdot \underbrace{\sum_{n=1}^{\infty}\left|-\frac{1}{n}+\log \left(1+\frac{1}{n}\right)\right|}_{\text {apply (1) with z vepaced by } 1 .}<\infty
\end{aligned}
$$

This finishes the claim, thus.

$$
\begin{aligned}
\prod_{n=1}^{\infty} & e^{-\log \left(1+\frac{z}{n}\right)+z \log \left(1+\frac{1}{n}\right)}=\prod_{n=1}^{\infty} e^{-\log \left(1+\frac{z}{n}\right)+\frac{z}{n}} \cdot e^{-\frac{z}{n}+z \log \left(1 \frac{1}{n}\right)} \\
& =e^{\sum_{n}-\log \left(1+\frac{z}{n}\right)+\frac{z}{n}+\sum_{n}-\frac{z}{n}+z \log \left(1+\frac{1}{n}\right)}
\end{aligned}
$$

Since both sums are absolutely convergent, we have the product converges.

The product expansion for Γ follows from the partial product:

$$
\begin{aligned}
& \frac{1}{z} \prod_{n=1}^{m-1}\left(\frac{n}{n+z}\right) \cdot\left(\frac{n+1}{n}\right)^{z} \\
= & \frac{1}{z} \frac{(m-1) \cdots 1}{(1+z) \cdots(z+m-1)} m^{z}
\end{aligned}
$$

$$
\begin{aligned}
\Gamma(z+1) & =\lim _{m \rightarrow \infty} \frac{(m-1) \cdots 1}{(z+1) \cdots(z+m)} m^{z+1} \\
& =\lim _{m \rightarrow \infty} z \cdot \frac{1}{z} \frac{m(m-1) \cdots 1}{(z+1) \cdots(z+m)} \cdot(m+1)^{z}\left(\frac{m}{m+1}\right)^{z} \\
& =z \cdot \Gamma(z) \cdot \lim _{m \rightarrow \infty}\left(\frac{m}{m+1}\right)^{z} \\
& =z \cdot \Gamma(z) .
\end{aligned}
$$

\#16 Let α_{k} be a seq of complex numbers, maybe with repetition. $\left|a_{k}\right|<1,\left|a_{k}\right| \rightarrow 1$. Consider

$$
B(z)=\prod_{k=1}^{\infty} \frac{\bar{\alpha}_{k}}{|\alpha|} \cdot \frac{\alpha_{k}-z}{1-\overline{\alpha_{k} \cdot z}}
$$

(a) If $\sum\left(1-\left|a_{F}\right|\right)<\infty$, Let E be the set of accumulation pts on ∂D. Show that this infinite product converges on $\mathbb{C}^{*} \backslash E$. to a meromophiz function $B(z)$. Sit.
$|B(z)|<1$ for $z \in \mathbb{D}$

$$
|B(z)|=1 \quad \text { for } \quad z \in \partial \mathbb{D} \backslash E \text {. }
$$

and $B(z)$ has zero exactly at points a_{k}.
(b) Show that, if $\Sigma\left(1-\left|a_{k}\right|\right)=+\infty$, then the infinite product converges uniformly on compact subsets of D to 0 .

Pf: (a) suppose the integer N is large enough, such that

$$
\forall n>N, \quad\left(1-\left|a_{n}\right|\right)<\frac{1}{2}
$$

For any $\alpha \in \mathbb{C}$, with $\frac{1}{2}<|\alpha|<1$, any $|z|<1$, we have let $\alpha=r \cdot e^{i \theta}$

$$
\begin{aligned}
& \frac{\bar{\alpha}}{|\alpha|} \cdot \frac{\alpha-z}{1-\bar{\alpha}}=e^{-i \theta} \frac{r e^{i \theta}-z}{1-r e^{-i \theta} z}=r \cdot \frac{1-r^{-1} \cdot e^{-i \theta} z}{1-r e^{-i \theta} z} \\
= & r \cdot\left(\frac{1-r e^{-i \theta} z+\left(\gamma-r^{-1}\right) e^{-i \theta} z}{1-r e^{-i \theta} z}\right) \\
= & r \cdot\left(1+\left(r-\gamma^{-1}\right) \cdot \frac{e^{-i \theta} z}{1-r e^{-i \theta} z}\right)
\end{aligned}
$$

Now. $\begin{aligned} \prod_{n=1}^{\infty}\left|a_{n}\right| & =\prod_{n=1}^{\infty}\left(1-\left(1-p_{n} \mid\right)\right) \quad \because \Sigma\left(1-\left|a_{n}\right|\right)<\infty \\ & <\infty\end{aligned}$

If $|z|<1$, then $\left|1-r e^{-i \theta} z\right| \geqslant 1-r|z| \geqslant 1-|z|$.
Hence $\prod_{n=1}^{\infty}\left(1+\left(r_{n}-r_{n}^{-1}\right) \cdot \frac{e^{-i \theta_{n}} \cdot z}{1-r_{n} e^{-i \theta_{n}} z}\right)$

$$
\begin{aligned}
& \sum_{n=1}^{\infty}\left|\left(r_{n}-\gamma_{n}^{-1}\right) \frac{e^{-i \theta_{n}} z}{1-r_{n} \cdot e^{-i \theta_{n}} z}\right| \leqslant \frac{|z|}{1-|z|} \cdot \sum_{n=1}^{\infty}\left|\gamma_{n}^{-1}-r_{n}\right| \\
& =\frac{|z|}{1-|z|} \sum_{n=1}^{\infty}\left(\left|\gamma_{n}^{-1}-1\right|+\left|1-\gamma_{n}\right|\right) \\
& \because \quad \sum_{n=1}^{\infty}\left(1-\gamma_{n}\right)<\infty .
\end{aligned}
$$

and since $\gamma_{n} \rightarrow 1, \quad \therefore \exists N$ sit. $\forall n>N, \gamma_{n}>\frac{1}{2}$.

$$
\begin{aligned}
& \sum_{n=1}^{\infty}\left|\gamma_{n}^{-1}-1\right|=\sum_{n=1}^{\infty}\left|\frac{1-r_{n}}{r_{n}}\right| \\
\leqslant & \sum_{n=1}^{N} \frac{1-r_{n}}{r_{n}}+\sum_{n=N+1}^{\infty} \frac{1-r_{n}}{(1 / 2)}<\infty
\end{aligned}
$$

Hence, the above $\sum_{n=1}^{\infty}\left|\left(r_{n}-r_{n}^{-1}\right) \frac{e^{-1 \theta_{n}} z}{1-r_{n} \cdot e^{-i \theta_{n}} z}\right|<\infty$

$$
\therefore \prod_{n=1}\left|\left(1+\left(r_{n}-r_{n}^{-1}\right) \cdot \frac{e^{-i \theta_{n}} \cdot z}{1-r_{n} e^{-i \theta_{n}} z}\right)\right|<\infty
$$

If $|z|>1$, let $w=\frac{1}{z}$, let $\beta_{n}=\bar{\alpha}_{n}$, then

$$
B(z)=\prod_{n} \frac{\bar{\alpha}_{n}}{\left|\alpha_{n}\right|} \frac{\alpha_{n}-\frac{1}{w}}{1-\bar{\alpha}_{n} \frac{1}{w}}=\prod_{n} \frac{\bar{\alpha}_{n}}{\left|\alpha_{n}\right|} \frac{w \alpha_{n}-1}{w-\bar{\alpha}_{n}}
$$

$$
=\left[\pi_{n} \frac{\bar{\beta}_{n}}{\beta_{n}} \frac{\beta_{n}-\omega}{1-\bar{\beta}_{n} \omega}\right]^{-1}
$$

Hence, by the same argument, this product converges. for $|\omega|<1$.

Finally, if $|z|=1$, and $z \notin E$, then $\exists \varepsilon>0$, sit.

$$
B_{z}(z) \cap E=\phi_{0} \quad \text { And } \exists N>0 \text {. sit. } \forall n>N,\left|d_{n}-z\right|>\frac{\xi}{2} .
$$

Thus. $\quad\left|\frac{1}{1-\bar{\alpha}_{n} z}\right|=\left|\frac{1}{z-\alpha_{n}}\right|<\frac{2}{\varepsilon}$
thus

$$
\begin{aligned}
& \sum_{n=N}^{\infty}\left|\left(r_{n}-\gamma_{n}^{-1}\right) \frac{e^{-i \theta_{n}} z}{1-\gamma_{n} \cdot e^{-i \theta_{n} z}}\right| \\
\leqslant & |z| \cdot \frac{2}{\varepsilon} \cdot \sum_{n=N}^{\infty}\left|\gamma_{n}-\gamma_{n}^{-1}\right|<\infty
\end{aligned}
$$

Hence $B(z)$ also converges on $z \in \partial \mathbb{D} \backslash E$. In particle since $\left|\frac{\alpha-z}{1-\bar{\alpha} z}\right|=1$., each Blasche factor has unit modulus, thus $\quad|B(z)|=1 \quad \forall z \in \partial \mathbb{D} \backslash E$.
(b) If $\sum_{n}\left(1-\left|a_{n}\right|\right)=+\infty$, then

$$
\prod_{n}\left|\alpha_{n}\right|=0
$$

Since $\left|\frac{\alpha-z}{1-\alpha z}\right| \leqslant|\alpha|^{\frac{1}{2}}, \forall|\alpha|<1,|z|<1$.
hence $\quad \prod_{n}\left|\frac{\alpha_{n}-z}{1-\alpha_{n} z}\right| \leqslant \prod_{n}\left|\alpha_{n}\right|^{\frac{1}{2}}=0$.
[G] $P_{360} \# 2$.

$$
f(z)=z \prod_{n=1}^{\infty}\left(1-\frac{z}{n^{2}}\right)
$$

convergent $\because \sum \frac{1}{n^{2}}<\infty$
\#5: $\quad \prod_{\alpha \in \mathbb{Z}+i z}\left(1-\frac{z}{\alpha}\right) e^{\left(\frac{z}{\alpha}\right)+\left(\frac{z}{\alpha}\right)^{2} / 2}$
or if you want to be safe, use. $\Pi E_{n}\left(\alpha_{n}\right)$ where α_{n} is an enumeration of $\mathbb{Z}+i \mathbb{Z}$.

