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Problem (7). Suppose f : D — C is holomorphic. Show that the diameter
d=sup. ,ep|f(2) = f(w)| of the image satisfies

2[f'(0) <d
Moreover it can be shown that equality holds precisely when f is linear, f(z) =
apg + a1 z.

Solution. For 0 < r < 1, let (', be the circle centered at 0 with radius r.
Consider the Cauchy integral expression for f'(0), we have

f'(0) = 1 / f(w) sdw.

2w C, (‘U_’ - 0)
We may replace the integration variable w by —w, and get
1 f(—w)
f'(0) = d(—w).

2w Jo (—w —0)?

Summing up the two equations, we have

2f,(0) — i‘/c f(w) — f(_w) dw.

w?
Taking absolute value on both sides, we have

27(0)] < 5- /C F(w) = F=wl, 4,

< L sup [fw) = f(—w)|- /C u172|dw|

27 wec,

1 2mr
< —d—
-2 r2
o d

r
Since the inequality holds for any 0 < r < 1, we get
2f/(0)] < inf £ i

<r<lT



Problem (8). If f is holomorphic on a strip {x+iy |z € R, -1 <y < 1}, with
lf(2) <A+ 2", 7 a fived real number

for all z in that strip. Show that for each n > 0, there exists a constant A,,,
such that
1f ()] < An(L + 2])”

forallz € R.

Solution. Fix a r with 0 < r < 1. Let C,(z) be the circle centered at x with
radius . Then by Cauchy estimate

n! ,
p If(w)l= A sup (14 |w])".

n!
If™(@) < — su
™ weC,(z) weC, ()

We claim that there exists a constant C', only dependent on 7, such that

sup (14 |w])” < C(1+ |z|)"
weC,.(x)

Given the claim, we have the desired result
n!
(z)| < inf iAjl T=nlAC(1 )"
FO@) < inf T AC(LU+[al)? = nlAC(L+ |al)",

with A,, = n!AC.
Now we prove the claim. In fact we show one can take C' = 21|, Indeed, if
7 > 0, then

sup (14 [w])” < (1+ |2| +7)" < (24 |2])7 = 27(1 + |2|/2)" < 27(1 + [a])".

weC, (z

If n <0, then

HEE A 1 < 1
sup (1 + ) < el g1 el
weCy(x) I+ z[=r)" |z| =7 lz|" |z =1

Let h(z) be the piecewise defined function on the right in the above inequality.
For |z| < 1,

h(z) ‘
sup ————— = sup ———— =2~/
ej<t (L 127 g (14 [2])
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5.2 Sequences of holomorphic functions

Theorem 5.2 If {f,}%, is a sequence of holomorphic functions that
converges uniformly to a function f in every compact subset of ), then
[ is holomorphic in €.

Proof. Let D be any disc whose closure is contained in Q and T
any triangle in that disc. Then, since each f,, is holomorphic, Goursat’s
theorem implies

/ fo(2)dz=0 for all n.

By assumption f, — f uniformly in the closure of D, so f is continuous

and

/ fn(z)dz — / f(z)dz=.

Jr Jr
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As aresult, we find ]1 f(2)dz = 0, and by Morera’s theorem, we conclude

that f is holomorphic in D. Since this conclusion is true for every D
whose closure is contained in €2, we find that f is holomorphic in all of
Q.



Problem (12). Let u be a real valued function defined on the unit disk D.
Suppose that u is twice differentiable and harmonic, that is Au(z,y) = 0 for all
z,y € D.
(a) Prove that there exists a holomorphic function f on the unit disk, such
that
Re(f) = u

(b) Deduce from this result, the Poisson integration formula. Ifu is harmonic

in D is is continuous on its closure D, then if z = re?, one has
1 27 )
we) = [P0 - p)u(e)dg
27 0

where P,(0) is the Poisson kernel

1—72
Pl)= ——W—
»(0) 1 —2rcosf + r2

Solution. (a) Let’s make some observation first. To construct f, we try to

construct its derivative f’ then integrate to get f. If we know a holomorphic
function f(z) = u(z) +iv(z), then f'(z) = 20,u(z), indeed

0.f(2) = 0. f(z,y) = Op(u(z,y) + iv(x,y)) = Oru — i0yu = 20,u(z).

Now we begin the proof. Define g(z) = 20,u(z) = d,u — i0yu. Then g(z) is
once differentiable (though 0,g,d,¢ may not be continuous), since

0:9(z) = 20:0,u(z) = (1/2)Au=10

hence g(z) is holomorphic for all z € D. From Theorem 2.1, we know g has a
primitive F. We claim that ReF' — u is a constant. Indeed, we have

Oz (ReF — u) +i0y(ReF — u) = 20.(ReF —u) = g(z) — g(z) =0,

hence the partial derivatives of (ReF —u) vanishes, hence ReF —u is a constant.
Denote this constant by ¢, and define f = F — ¢, we then get f a holomorphic
function with Ref = u.

(b) Apply (a) to get a holomorphic function f with Ref = u. If z = €,
then let R € R such that |z| < R < 1. Then by Exercise 11, we have

1

2 )
10=-5 f(Re"*")Re(R””)d

Ret¥ — z
Taking the real part on both sides, we get

u(z) = 5 / " u(re) o d
= o 0 " "R? —2Rrcos(p — 0) + r? v

Let R — 1, by uniform continuity, we get

w) =5 [ ule)R 0~ )i

Note that cos(z) is an even function, hence P,.(6 — ) = P,.(p — ).



