Things that we have covered since midterm 1 D Rouché theorem, open mapping, maximum principle

(2) Fourier transformation. Relationship between analyticity of
$$f(z)$$
, and properties of $\hat{f}(\bar{z})$

•
$$f(z)$$
 is defined for $\{|\operatorname{Im}(z)| < a\}$
 $\Leftrightarrow \hat{f}(s)$ decays like $e^{-2\pi a |s|}$

$$\left(\begin{array}{c} \text{Paley-Wiener} \end{array}\right) \circ \quad f(z) \text{ is entire and has growth bounded by} \\ \left(\begin{array}{c} \text{Paley-Wiener} \end{array}\right) \circ \quad \left|f(z)\right| < e^{2\pi M |z|} \\ \quad f(z) \text{ vanishes for } z \in \mathbb{R} \text{ and } |z| > M. \end{array}$$

• Order of growth and distribution of zero. - Jenson's formula $\sum \log \left|\frac{a_n}{R}\right| = \frac{1}{2\pi} \int_0^{2\pi} \log |f(Re^{i\theta})| d\theta - \log |f(o)|$ An roots of f(z) in $D_R(o)$

- If order of growth
$$\leq \rho$$
, then
$\frac{1}{2}$ roots $\frac{1}{2}$ in $D_R(0, \frac{3}{2} \leq C \cdot R^{\rho}$

 Φ Γ- function
 integral presentation, analytic continuation.
 relation with sine function.
 Γ(z) Γ(1-z) = π sin(πz)

Sample Midterm 2 Questions:

(1) if $f_0(z)$ is a polynomial with roots z=1, z=2and $f_1(z)$ — with roots z=3, z=4. and if we define $f_t(z) = (1-t) \cdot f_0(z) + t f_1(z)$, then $f_t(z)$ will have two roots, moving from $\xi_{1,2}$ continuously to $\xi_{3,4}$, true or false?

(2). If
$$f(z) = \frac{(z-a_1)-\cdots (z-a_n)}{(z-b_1)-\cdots (z-b_n)}$$
, with a_i, b_j
all distinct ($a_i \neq b_j \neq i, j$), then f defines a
holomorphic function : $\widehat{c} \longrightarrow \widehat{c}$ (i.e. a
rational function), what is $f(\infty) = ?$
what is $f^{-1}(\infty) = ?$

(3) Let
$$f(z) = z^2$$
, $\Omega = imz = 2^3$,
is $f(\Omega)$ an open set? What is $f(\Omega)?$

(4). Let
$$f(z) = \frac{1}{z^2 + a^2}$$
, what is $\hat{f}(z)$?

(5) Let
$$f(z) = e^{-z^4}$$
, what can we say

about
$$\hat{f}(s)$$
? Does it exist?
Is $\hat{f}(s)$ a holic function in s ?