Review about topology (cont'd)
 Definition of hol'c function.

<u>Fact</u>: Ω is open $\Leftrightarrow \Omega^{c}$ is closed.

• bounded set : SZ is bounded if diam $(SZ) := \sup_{z,w \in SZ} dist(z,w) < \infty$

$$dist(z_{i}w) = [z-w]$$

• compact subset of
$$C$$
:
A subset $A \subset C$ is compact if A is closed
and bounded.

• X is compact, if every open cover of
$$X_{-1}(ie, X = \bigcup U_{\alpha})$$

admits a finite subcover, (i.e. there is a
finite subcollection $\tilde{I} \subset I$, $X = \bigcup U_{\alpha}$)
 $\mathcal{A} \in \tilde{I}$

Continuous Maps:
• Let
$$f: X \rightarrow Y$$
 (e.g. $X = \mathbb{R}, Y = \mathbb{R}$).
we say f is continuous at point $\chi_0 \in X$, if
 $f(x_0) = \lim_{X_n \rightarrow X_0} \frac{f(X_n)}{\sum_{in Y}}$
 $(if rx_0) = \frac{f(X_n)}{\sum_{in Y}}$
 $(if rx_0) = \frac{f(X_n)}{\sum_{in Y}}$

• If f is continuous at every point of X, we say f is a continuous many $X \rightarrow Y$.

- Equivalently, we say f is cont. at $x \in X$, if $\forall \in 70$, $\exists \leq 70$, s.t. $\forall x \in B_{\delta}(x_{0})$, we have $f(x) \in B_{\epsilon}(f(x_{0}))$.
- ★ Equivalently; if for any open subset V ⊂ Y,
 f⁺(V) = { × ∈ X | f(x) ∈ V }. is an open subset of X.
 then we say, f: X → Y is continuous,
 ' preimage of open is open'

Prop: If f i X→Y is continuous, and A ⊂ X is compact,
then
$$f(A) ⊂ Y$$
 is compact.
Holomorphic Function:
• Let $Ω ⊂ C$ be any subst.
 $f: Ω → C$ any function.
We say f is holomorphic at $z ∈ Ω$, if.
 $\lim_{z → z ∈ Z}$ is well-defined.
 $z → z ∈ f(z) − f(z)$ is well-defined.
 $z → z ∈ f(z) − f(z)$ is well-defined.
 $u : Ω \setminus fz = f(z) − f(z)$
 $u(z) = \frac{f(z) − f(z)}{z - z}$.
We can ask, if lim $U(z)$ exist.
 $z → z ∈ Ω$
 $u(z) = \frac{f(z) − f(z)}{z - z}$.
We can ask, if lim $U(z)$ exist.
 $z → z ∈ Ω$
if the limit is well defined, are call that limit the
(complex) derivative, $f'(z_0)$.
• If $Ω ⊂ C$ is open, and f is hole at every pt
 $in Ω$, we say $f: Ω → C$ is a hole function.
 $u ∈ z ∈ f(z) = z ∈ f(z_0)$.

$$\begin{bmatrix} \forall z_0 \in \mathbb{C}, & \lim_{z \to z_0} \frac{f(z_0) - f(z_0)}{z - z_0} = \lim_{z \to z_0} \frac{z - z_0}{z - z_0} = \lim_{z \to z_0} 1 = 1. \end{bmatrix}$$

$$F(X_0 + h_1, y_0 + h_2) = F(X_0, y_0) + J \cdot \begin{pmatrix} h_1 \\ h_2 \end{pmatrix} + |h| \cdot R(h)$$

$$where R(h) \rightarrow 0, as |h| \rightarrow 0.$$

$$h = \begin{pmatrix} h_1 \\ h_2 \end{pmatrix}, |h| = \sqrt{h_1^2 + h_2^2}.$$

• Prop: if f is holic at
$$z_0 = x_{0+1}y_0 \in SZ$$
, then
F is differentiable at Z_0 , and the partial
derivatives satisfies.
 $\frac{\partial U}{\partial \chi} = \frac{\partial V}{\partial Y}$, $\frac{\partial U}{\partial Y} = -\frac{\partial V}{\partial \chi}$

Take the real & imaginary part above, we get: $\int \mathcal{U}(z_0+h) = \mathcal{U}(z_0) + \frac{\operatorname{Re}(f'(z_0)) \cdot h_1 - \operatorname{Im}(f'(z_0)) \cdot h_2}{+ |h| \cdot Y_1(h)}$ $\int \mathcal{U}(z_0+h) = \mathcal{V}(z_0) + \operatorname{Re}(f'(z_0)) \cdot h_2 + \operatorname{Im}(f'(z_0)) \cdot h_1 + |h| \cdot Y_2(h).$

 $(a+ib) \cdot (c+id) = (ac - bd) + i (ad+bc).$

$$\Rightarrow \text{for} \quad J = \begin{pmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{pmatrix}, \quad , \quad \text{we} \quad have.$$

$$\begin{pmatrix} u(z_0+h) - u(z_0) \\ v(z_0+h) - v(z_0) \end{pmatrix} =, \quad J \cdot \begin{pmatrix} h_i \\ h_z \end{pmatrix}, \quad t \quad |h| \cdot \begin{pmatrix} r_i(h) \\ r_i(h) \end{pmatrix}.$$

$$\begin{aligned} f'(z_0) &= \lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{h} \\ & h \to 0 \end{aligned}$$

if $h = h_1 + ih_2$, and $h_2 = 0$, then.
$$f'(z_0) &= \lim_{\substack{h_1 \to 0 \\ h_1 \in \mathbb{R}}} \frac{f(z_0 + h_1) - f(z_0)}{h_1} = \frac{\partial u}{\partial x} + i \frac{\partial V}{\partial x}.$$

if
$$h_1 = 0$$
, let $h_2 \to 0$. then.

$$f'(z_0) = \lim_{\substack{h_2 \to 0 \\ h_2 \in \mathbb{R}}} \frac{f(z_0 + ih_2) - f(z_0)}{ih_2} = \frac{1}{i} \left(\frac{\partial U}{\partial y} + i \frac{\partial V}{\partial y} \right).$$

setting
$$\frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} = \frac{1}{i} \frac{\partial u}{\partial y} + \frac{\partial v}{\partial y}$$

and compare the real & imaginary of both sides, we get.

$$\begin{cases} \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \\ \frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y}. \\ and \qquad f'(z_0) = \frac{\partial u}{\partial x} - i\frac{\partial u}{\partial y}. \qquad Re(f'(z_0)) = \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \\ Im(f'(z_0)) = \frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y}. \\ \end{bmatrix}.$$
Conversely:

If: see stein.

Next time: e^{x} , $\log(x)$, \sqrt{z} , $\sqrt{(z-1)(z-2)}$, ---power series.