
9.
Intro.

We examine ∫
γR,ε

log(sinπz)dz

where

• log is defined on C \ (−∞, 0] by

log(reiθ) = log r + iθ θ ∈ (−π, π)

• γR,ε is a tall rectangle indented with small quarter-circles:

The rectangle has width 1 and height R.
The quarter-circles have radius ε.

Notation.
For convenience,

γ = γR,ε

Path of sinπz.
We examine the path of sinπz as z runs over each piece of γ.
Two purposes:

• To verify that sinπz stays in the domain of our logarithm.

• To help evaluate log(sinπz) later.

Below is a drawing of the path.
Squiggles indicate a change of scale.
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Vertical sides:
Left side: z = iy, ε ≤ y ≤ R

Positive imaginary axis,
i.e. sinπz = ic with c > 0.

sinπz = 1
2i

(
eiπz − e−iπz

)
= 1

2i (e
−πy − eπy︸ ︷︷ ︸

<0

)

= i 1
2 (eπy − e−πy)︸ ︷︷ ︸

>0

Right side: z = 1 + iy, ε ≤ y ≤ R
Negative imaginary axis,
i.e. sinπz = −ic with c > 0.

sinπz = 1
2i

(
eiπz − e−iπz

)
= 1

2i (e
iπe−πy − e−iπeπy)

= 1
2i (−e

−πy −−eπy︸ ︷︷ ︸
>0

)

= −i 1
2 (eπy − e−πy)︸ ︷︷ ︸

>0

Horizontal sides:
Bottom side: z = x, ε ≤ x ≤ 1− ε

Positive real.
Top side: z = x+ iR, ε ≤ x ≤ 1− ε
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Roughly a big semicircle centered at 0,
in right half-plane.
sinπz ≈ eπReiθ, θ ∈ [−π2 ,

π
2 ].

sin(πz) = 1
2i

(
eiπz − e−iπz

)
= 1

2i

(
eiπxe−πR − e−iπxeπR

)
= i 12

(
e−iπxeπR − eiπxe−πR

)
≈ i 12e

−iπxeπR

Note that, even before approximating, we have

Im
(
e−iπxeπR

)
< Im

(
eiπxe−πR

)
Im
(
e−iπxeπR − eiπxe−πR

)
< 0

Re sinπz > 0

for 0 < x < 1,
which shows that the path stays in the domain of log.

Quarter circles:
Left quarter circle: z = εeiθ, θ ∈ [0, π2 ]

sinπz travels roughly the same quarter circle as πz,
i.e. sinπz ≈ πz.
(This is in upper-right quadrant of the plane.)
Using the power series centered at 0:

sinπz = πz + z2φ(z)

where φ is holomorphic in a neighborhood of 0.

When ε = |z| is sufficiently small,
at least one of

|Im(πz)| >
∣∣Im(z2φ(z))

∣∣
|Re(πz)| >

∣∣Re(z2φ(z))
∣∣

must hold, ensuring that sinπz is in the domain of log.
(Recall that πz lies in the upper-right quadrant.)

Note also that, when ε is sufficiently small,
our formula for sinπz gives

ε < |sinπz| < 1

Right quarter circle: z = 1 + εeiθ, θ ∈ [π2 , π]
sinπz travels roughly the same quarter circle as −π(z − 1),
i.e. sinπz ≈ −π(z − 1).
(This is in lower-right quadrant of the plane.)
We also have the bound

ε < |sinπz| < 1

when ε is sufficiently small.
Reasoning is similar to previous case, using the formula

sin(πz) = −π(z − 1) + (z − 1)2ψ(z)
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Evaluating pieces.
Vertical.

∫ ε

y=R

log(sinπ(iy))idy +

∫ R

y=ε

log(sinπ(1 + iy))idy

=

∫ R

y=ε

[
log(sinπ(1 + iy))− log(sinπ(iy))

]
idy

=

∫ R

y=ε

[
(−iπ2 + log

∣∣ 1
2 (eπy − e−πy)

∣∣)− (iπ2 + log
∣∣ 1
2 (eπy − e−πy)

∣∣)]idy
=

∫ R

y=ε

−iπidy

=

∫ R

y=ε

πdy

= π(R− ε)

This approaches
πR

as ε→ 0+.
Top.

∫ 0

x=1

log(sinπ(x+ iR))dx

=

∫ 0

x=1

[
log

sinπ(x+ iR)

|sinπ(x+ iR)|
+ log |sinπ(x+ iR)|

]
dx

=

∫ 0

x=1

[
log i

e−iπxeπR − eiπxe−πR

|e−iπxeπR − eiπxe−πR|
+ log 1

2

∣∣e−iπxeπR − eiπxe−πR∣∣ ]dx
=

∫ 0

x=1

log i
e−iπxeπR − eiπxe−πR

|e−iπxeπR − eiπxe−πR|
dx

+

∫ 0

x=1

log 1
2e
πRdx

+

∫ 0

x=1

log
∣∣e−iπx − eiπxe−2πR∣∣ dx

As R→∞,

i
e−iπxeπR − eiπxe−πR

|e−iπxeπR − eiπxe−πR|
→ ie−iπx = ei(−πx+

π
2 )

∣∣e−iπx − eiπxe−2πR∣∣→ 1

uniformly in x (and note that −πx+ π
2 ∈ (−π, π)).

Due to the compactness of {
ei(−πx+

π
2 )
∣∣∣ x ∈ [0, 1]

}
{1}
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we find that log is uniformly continuous on these sets,
hence log preserves the uniform convergence,
hence our sum of integrals approaches

=

∫ 0

x=1

i(−πx+ π
2 )dx

+

∫ 0

x=1

[
− log 2 + πR

]
dx

+

∫ 0

x=1

0dx

= i(π2 −
π
2 ) + (log 2− πR) + 0

= log 2− πR

Bottom.
The integral ∫ 1−ε

x=ε

log(sinπx)dx

approaches ∫ 1

x=0

log(sinπx)dx

as ε→ 0+.
Quarter circles.

We use the bound ∣∣∣∣∫
quarter circle

log(sinπz)dz

∣∣∣∣ < M π
2 ε

where M is the maximum magnitude of the integrand on the contour
and π

2 ε is the length of the contour.

Recall that on the quarter circles we have

ε < |sinπz| < 1

The log is
log(sinπz) = µ(z) + log |sinπz|

where µ(z) is purely imaginary and |µ(z)| < π.

log ε < log |sinπz| < 0

Hence

|log(sinπz)| < π + | log ε|

giving the bound ∣∣∣∣∫
quarter circle

log(sinπz)dz

∣∣∣∣ < (π + | log ε|)π2 ε

which approaches 0 as ε does.
(In particular, we use the fact that ε log ε→ 0 as ε→ 0+.)

Assembly, conclusion.
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Immediately

0 =

∫
γ

log(sinπz)dz

because the integrand is holomorphic on the contour and its interior.

This integral equals the sum of the integrals over the pieces of γ;
as R→∞ and ε→ 0+ together (e.g. letting R = 1

ε and having R→∞),
this sum of integrals remains approaches

πR+ (log 2− πR) +

∫ 1

0

log(sinπx)dx

log 2 +

∫ 1

0

log(sinπx)dx

It also approaches 0, since it is constantly 0.
Hence

0 = log 2 +

∫ 1

0

log(sinπx)dx∫ 1

0

log(sinπx)dx = − log 2

QED.
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12.
Poles.

The poles of f are at the integers and −u.
Residues.

resn f .
To determine resn f for n ∈ Z, we note

f(z) = (u+ z)−2π cosπz · 1

sinπz

From previous homework, we have

1

sinπz
=

(−1)n

π
(z − n)−1 + F (z)

with F holomorphic on a neighborhood of n.
Also

(u+ z)−2π cosπz = (u+ n)−2π(−1)n + zG(z)

with G holomorphic on a neighborhood of n.
Hence

1

sinπz
= (u+ n)−2(z − n)−1 +H(z)

with H holomorphic on a neighborhood of n,
therefore

resn f = (u+ n)−2

res−u f .
Calculating 0-th and 1-st derivatives of π cotπz at −u,
we obtain

π cotπz = −π cotπu− π2

(sinu)2
(z + u) + z2I(z)

with I holomorphic on a neighborhood of −u. Hence

π cotπz

(u+ z)2
= (z + u)−2

(
−π cotπu− π2

(sinu)2
(z + u) + z2I(z)

)
= −π(cotπu)(z + u)−2 − π2

(sinu)2
(z + u)−1 + I(z)

res−u f = − π2

(sinu)2

Linking integral to summation.
When N is large enough,
the residue formula gives

1
2πi

∫ +

|z|=RN
f(z)dz = − π2

(sinu)2
+

N∑
n=−N

1

(u+ n)2

Decay of integral.
|cotπz| < 5.
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We prove the above result when |z| = RN and N is sufficiently large.

cot z =
cos z

sin z

=
1
2

(
eiz + e−iz

)
1
2i (eiz − e−iz)

= i
ei2z + 1

ei2z − 1

= i

(
1 +

2

ei2z − 1

)

cotπz = i

(
1 +

2

e2πiz − 1

)
When Im(z) > 1 we have ∣∣e2πiz∣∣ < 1

e2π∣∣e2πiz − 1
∣∣ > 1− 1

e2π

|cotπz| < 1 +
2

1− 1
e2π

< 5

When Im(z) < −1 we have ∣∣e2πiz∣∣ > e2π

|cotπz| < 1 +
2

e2π − 1

< 5

When | Im(z)| ≤ 1,
if N is big enough we have

RN − |Re(z)| < 1
4

N + 1
4 < |Re(z)| < N + 3

4

Re(e2πiz) < 0

Re(e2πiz − 1) < −1∣∣e2πiz − 1
∣∣ > 1∣∣∣∣ 2

e2πiz − 1

∣∣∣∣ < 2

|cotπz| < 1 + 2

< 5
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Hence ∣∣∣∣∣
∫ +

|z|=RN

π cotπz

(u+ z)2
dz

∣∣∣∣∣ ≤ (2πRN )
5π

R2
N − |u|

which approaches 0 as N →∞.
Conclusion.

The above sections show that

0 = lim
N→∞

∫ +

|z|=RN

π cotπz

(u+ z)2
dz

= − π2

(sinu)2
+

∞∑
n=−∞

1

(u+ n)2

Hence the desired result.
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16.
(a)

If ε is small enough,
then |f | < |εg| on the unit circle,
hence f + εg︸ ︷︷ ︸

=fε

has no zeros on the unit circle
and has the same number of zeros in D as f does,
i.e. has exactly one.
Hence fε has a unique zero in |z| ≤ 1.

(b)
By the proof of (a),
we know that if ε is sufficiently small
then fε has a unique zero on |z| < 1.

Let ε0 be small enough for that.
We will prove the continuity of ε 7→ zε at ε0.

Let r > 0 be small enough that Dr(zε0) ⊆ D1(0).
Define δ = m

M , where
m = min

z−zε0
|fε0 |

M = max
z−zε0

|g|

Then whenever |ε− ε0| < δ, we have
|fε0 | > |(ε− ε0)g|

on the circle |z − zε0 | < r.
So by Rouché’s theorem,
the function fε = fε0 + (ε− ε0)g
has a root on Dr(zε0) (since fε0 does),
so |zε − zε0 | < r.

Since r > 0 was an arbitrary small number,
we find that for any r > 0
there exists δ small enough that
|ε− ε0| < δ =⇒ |zε − zε0 | < r,
so ε 7→ zε is continuous.
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#4
Zeros on |z| < 2: 4.
Proof:

If |z| ≮ 2 then ∣∣z4 − 6z + 3
∣∣ ≥ |z|4 − | − 6z| − |3|

= |z|4 − 6|z| − 3

= |z|(|z|3 − 6)− 3

≥ 2(8− 6)− 3

= 1

> 0

hence all the roots are in |z| < 2,
and by fundamental theorem of algebra, there are 4.

Zeros on |z| < 1: 1.
Proof:

On |z| = 1, ∣∣z4 − 6z + 3
∣∣ ≥ −|z|4 + | − 6z| − |3|

= −1 + 6− 3

= 2

> 1

=
∣∣−z4∣∣

Hence the function
−6z + 3 = (z4 − 6z + 3) + (−z4)

has the same number of zeros on |z| < 1 as z4 − 6z + 3.
This function has a unique zero 1

2 ,
which lies in |z| < 1,
hence z4 − 6z + 3 also has exactly one zero there.
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#5
Note: to prove that a mapping is open,
it suffices to show that it maps open discs to open sets.
Indeed, this condition implies that the map takes open sets
(i.e. unions of open discs)
to unions of open sets (i.e. open sets).

f : C→ C, f(z) = z: open.
Reason: f maps Dr(z) to Dr(z).
Indeed, if |w − z| < r
then |w − z| = |w − z| = |w − z| < r.
(f is just reflection across horizontal axis.)

f : C→ R, f(z) = |z|2: not open.
f maps D1(0) to [0, 1).

f : C→ R, f(z) = Re(z) · Im(z): open.
f(z) = Im( 1

2z
2).

1
2z

2 is open because it’s holomorphic and nonconstant.
Im is open because
it maps Dr(z) to the open interval (Im(z)− r, Im(z) + r).
Hence f is a composition of open mappings,
hence open.

f : C→ R, f(z) = Re(z3 + 2z): open.
f(z) = Im(iz3 + i2z).
iz3 + i2z is open because it’s holomorphic and nonconstant.
We showed above that Im is open.
Hence f is a composition of open mappings,
hence open.
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