[G] 1.
(a) Answer is 2.

$$
\begin{aligned}
1+\frac{1}{n(n+2)} & =\frac{n^{2}+2 n+1}{n(n+2)} \\
& =\frac{(n+1)^{2}}{n(n+2)}
\end{aligned}
$$

We now show by induction that

$$
\prod_{n=1}^{N}\left(1+\frac{1}{n(n+2)}\right)=\frac{2}{1} \frac{N+1}{N+2}
$$

Base case: $\prod_{n=1}^{1}\left(1+\frac{1}{n(n+2)}\right)=\frac{2}{1}$.
Induction step: for $N+1$ we have

$$
\begin{aligned}
\prod_{n=1}^{N+1}(\cdots) & =\frac{2}{1} \frac{N+1}{N+2} \frac{(N+2)^{2}}{(N+1)(N+3)} \\
& =\frac{2}{1} \frac{N+2}{N+3}
\end{aligned}
$$

The infinite product is now

$$
\lim _{N \rightarrow \infty} \frac{2}{1} \frac{N+1}{N+2}=2
$$

(b) Answer is $\frac{1}{2}$.

$$
\begin{aligned}
1-\frac{1}{n^{2}} & =\frac{n^{2}-1}{n^{2}} \\
& =\left(\frac{n^{2}}{(n-1)(n+1)}\right)^{-1} \\
& =\left(1+\frac{1}{(n-1)(n+1)}\right)^{-1}
\end{aligned}
$$

By part (a) we now have

$$
\begin{aligned}
\prod_{n=2}^{\infty}\left(1-\frac{1}{n^{2}}\right) & =\prod_{n=2}^{\infty}\left(1+\frac{1}{(n-1)(n+1)}\right)^{-1} \\
& =\prod_{n=1}^{\infty}\left(1+\frac{1}{n(n+2)}\right)^{-1} \\
& =2^{-1} \\
& =\frac{1}{2}
\end{aligned}
$$

(c) Answer is 4 .

$$
\begin{aligned}
\frac{n^{2}-1}{n^{2}-4} & =\frac{(n-1)(n+1)}{(n-2)(n+2)} \\
\prod_{n=3}^{N} \frac{n^{2}-1}{n^{2}-4} & =\prod_{n=3}^{N} \frac{(n-1)(n+1)}{(n-2)(n+2)} \\
& =\frac{4}{1} \frac{N-1}{N+2} \\
& \rightarrow 4
\end{aligned}
$$

The partial product formula holds by induction.
Base case is the first factor, $\frac{2.4}{1.5}$.
Induction step is $\frac{4}{1} \frac{N-1}{N+2} \frac{N(N+2)}{(N-1)(N+3)}=\frac{4}{1} \frac{N}{N+3}$.
[G] 10.

$$
\begin{aligned}
\prod_{0 \leq n}^{<N}\left(1+z^{2^{n}}\right) & =\sum_{0 \leq k}^{<2^{N}} z^{k} \\
& \rightarrow \frac{1}{1-z} \quad(\text { when }|z|<1)
\end{aligned}
$$

The partial product formula holds by induction.
Base case is the empty product 1.
Induction step is $\left(\sum_{0 \leq k}^{<2^{N}} z^{k}\right)\left(1+z^{2^{N}}\right)=\sum_{0 \leq k}^{<2^{N}}+\sum_{k=0}^{2^{N}} z^{2^{N}} z^{k}=\sum_{0 \leq k}^{<2^{N+1}} z^{k}$.
[G] 14.
Throughout, $k \neq 0$.

$$
\prod_{-m \leq k \leq t m}\left(1+\frac{z}{k}\right)=\prod_{(-)}^{\prod_{-m \leq k \leq m}\left(1+\frac{z}{k}\right)} \prod_{(--)}^{ \pm m< \pm k \leq \pm t m}\left(1+\frac{z}{k}\right)^{ \pm 1}
$$

(The sign \pm in the exponent is the same sign used in the index condition $\pm m< \pm k \leq \pm t m$. If $t \geq 1$ then \pm is always + ; if $t \leq 1$ then \pm is always - .)
Now

$$
(-)=\prod_{k=1}^{m}\left(1-\frac{z^{2}}{k^{2}}\right) \rightarrow \frac{\sin \pi z}{\pi z}
$$

and

$$
\begin{aligned}
\log (--) & = \pm \sum_{ \pm m< \pm k \leq \pm t m} \log \left(1+\frac{z}{k}\right) \\
& = \pm \sum_{ \pm m< \pm k \leq \pm t m} \frac{z}{k}+R\left(\frac{z}{k}\right) \\
& = \pm z \sum_{\text {Taylor remainder }} \frac{1}{k} \pm \sum_{(*)} R \sum_{(* *)}^{ \pm m< \pm k \leq \pm t m}
\end{aligned}
$$

Let M_{m} be the max of $\left|R\left(\frac{z}{k}\right) / \frac{z}{k}\right|$ when $\pm m< \pm k \leq \pm t m$
and note that $M_{m} \rightarrow 0$ as $m \rightarrow \infty$.
Let $r=\min \{1, t\}$.
Then

$$
\begin{aligned}
|(* *)| & =\left| \pm \sum_{ \pm m< \pm k \leq \pm t m} \frac{z}{k}\left(R\left(\frac{z}{k}\right) / \frac{z}{k}\right)\right| \\
& \leq \sum_{ \pm m< \pm k \leq \pm t m} \frac{|z|}{k}\left|R\left(\frac{z}{k}\right) / \frac{z}{k}\right| \\
& \leq \sum_{ \pm m< \pm k \leq \pm t m} \frac{|z|}{r m} M_{m} \\
& \leq\lceil|m-t m|\rceil \frac{|z|}{r m} M_{m} \\
& \leq(|m-t m|+1) \frac{|z|}{r m} M_{m} \\
& =\left(|1-t|+\frac{1}{m}\right) \frac{|z|}{r} M_{m} \\
& \rightarrow 0
\end{aligned}
$$

We also have

$$
(*)=\sum_{ \pm m+1 \leq \pm k \leq \pm t m} \frac{1}{k}
$$

by inconsequentially changing the index condition.
Using integral bounds on (*), we have

$$
(*) \leq \pm \int_{m}^{t m} \frac{1}{x} d x= \pm \log t
$$

and

$$
\begin{aligned}
(*) & \geq \pm \int_{m}^{t m \mp 1} \frac{1}{x+1} d x=\log \left(t \mp \frac{1}{m}\right) \\
& \rightarrow \pm \log t
\end{aligned}
$$

so $(*) \rightarrow \pm \log t$.
Conclusion:

$$
\begin{aligned}
& \lim _{m \rightarrow \infty} \prod_{-m \leq k \leq t m}\left(1+\frac{z}{k}\right)=\lim _{m \rightarrow \infty} \prod_{(-)}^{\prod_{-m \leq k \leq m}\left(1+\frac{z}{k}\right)} \prod_{(--)}^{ \pm m< \pm k \leq \pm t m} 1\left(1+\frac{z}{k}\right)^{ \pm 1} \\
& =\frac{\sin \pi z}{\pi z} \exp \left(\lim _{m \rightarrow \infty} \pm z \sum_{\substack{ \pm m< \pm k \leq \pm t m}} \frac{1}{k} \pm \sum_{(*)}^{\sum_{(m< \pm k \leq \pm t m}} R\left(\frac{z}{k}\right)\right) \\
& =\frac{\sin \pi z}{\pi z} \exp (\pm z(\pm \log t) \pm 0) \\
& =\frac{\sin \pi z}{\pi z} \exp (z \log t) \\
& =\frac{\sin \pi z}{\pi z} t^{z}
\end{aligned}
$$

[S] 3.
Let $\beta=\operatorname{Im}(\tau)$. Order ≤ 2.

$$
\begin{aligned}
|\Theta(z \mid \tau)| & \leq \sum_{n \in \mathbb{Z}}\left|e^{\pi i n^{2} \tau} e^{2 \pi i n z}\right| \\
& \leq \sum_{n \in \mathbb{Z}} e^{-\pi n^{2} \beta} e^{-2 \pi n|z|} \\
& =\sum_{n \in \mathbb{Z}} \underbrace{e^{-\pi \beta\left(\left(n-\frac{|z|}{\beta}\right)^{2}-\frac{|z|^{2}}{\beta^{2}}\right)}}_{=: a_{n}} \\
= & \sum_{|n|<2 \frac{|z|}{\beta}} a_{n}+\sum_{k=0}^{\infty} a_{\left\lceil 2 \frac{|z|}{\beta}\right\rceil+k}+\sum_{k=0}^{\infty} a_{-\left(\left\lceil 2 \frac{|z|}{\beta}\right\rceil+k\right)} \\
\leq & \sum_{|n|<2 \frac{|z|}{\beta}} a_{n}+\frac{2}{1-e^{-2 \pi|z|}}
\end{aligned}
$$

The last inequality holds because

$$
\begin{gathered}
\left| \pm\left(\left\lceil 2 \frac{|z|}{\beta}\right\rceil+k\right)-\frac{|z|}{\beta}\right| \geq \frac{|z|}{\beta}+k \\
\left(\pm\left(\left\lceil 2 \frac{|z|}{\beta}\right\rceil+k\right)-\frac{|z|}{\beta}\right)^{2}-\frac{|z|^{2}}{\beta^{2}} \geq 2 \frac{|z|}{\beta} k+k^{2} \geq 2 \frac{|z|}{\beta} k \\
-\pi \beta\left(\pm\left(\left\lceil 2 \frac{|z|}{\beta}\right\rceil+k\right)-\frac{|z|}{\beta}\right)^{2}-\frac{|z|^{2}}{\beta^{2}} \leq-2 \pi|z| k \\
a_{ \pm\left(\left\lceil 2 \frac{|z|}{\beta}\right\rceil+k\right)}=e^{-\pi \beta\left(\pm\left(\left\lceil 2 \frac{|z|}{\beta}\right\rceil+k\right)-\frac{|z|}{\beta}\right)^{2}-\frac{|z|^{2}}{\beta^{2}}} \leq e^{-2 \pi|z| k} \\
\sum_{k=0}^{\infty} a_{ \pm\left(\left\lceil 2 \frac{|z|}{\beta}\right\rceil+k\right)} \leq \frac{1}{1-e^{-2 \pi|z|}}
\end{gathered}
$$

Next, observe that

$$
-\pi \beta\left(\left(n-\frac{|z|}{\beta}\right)^{2}-\frac{|z|^{2}}{\beta^{2}}\right) \leq-\pi \beta\left(-\frac{|z|^{2}}{\beta^{2}}\right)=\frac{\pi}{\beta}|z|^{2}
$$

So for all n,

$$
a_{n} \leq e^{\frac{\pi}{\beta}|z|^{2}}
$$

This gives

$$
\begin{aligned}
|\Theta(z \mid \tau)| & \leq \sum_{|n|<2 \frac{|z|}{\beta}} a_{n}+\frac{2}{1-e^{-2 \pi|z|}} \\
& \leq \sum_{|n|<2 \frac{|z|}{\beta}} e^{\frac{\pi}{\beta}|z|^{2}}+\frac{2}{1-e^{-2 \pi|z|}} \\
& \leq\left(2 \frac{|z|}{\beta}+1\right) e^{\frac{\pi}{\beta}|z|^{2}}+\frac{2}{1-e^{-2 \pi|z|}} \\
& \leq C e^{|z|^{2}} e^{\frac{\pi}{\beta}|z|^{2}}+D e^{\left(1+\frac{\pi}{\beta}\right)|z|^{2}}
\end{aligned}
$$

for some $C, D>0$.
Letting $A=C+D$ and $B=1+\frac{\pi}{\beta}$, we now have $A, B>0$ and

$$
|\Theta(z \mid \tau)| \leq A e^{B|z|^{2}}
$$

so $z \mapsto \Theta(z \mid \tau)$ has order ≤ 2.
Lemma. The function $z \mapsto \Theta(z \mid \tau)$ is not identically 0 .
Proof.
Fix z.

For each integer $N \geq 0$, define

$$
\Theta_{N}(z \mid \tau)=\sum_{\substack{n \in \mathbb{Z} \\ 2^{N} \mid n}} e^{\pi i n^{2} \tau} e^{2 \pi i n z}
$$

where the second "|" means divisibility.
Note that $\Theta_{0}=\Theta$.
Notice that $\forall z \in \mathbb{C}$:

$$
\begin{aligned}
\Theta_{1}(z \mid \tau) & =\frac{1}{2}\left(\Theta_{0}(z \mid \tau)+\Theta_{0}(z+1 \mid \tau)\right) \\
\Theta_{2}(z \mid \tau) & =\frac{1}{2}\left(\Theta_{1}(z \mid \tau)+\Theta_{1}\left(\left.z+\frac{1}{2} \right\rvert\, \tau\right)\right) \\
& \vdots \\
\Theta_{N}(z \mid \tau) & =\frac{1}{2}\left(\Theta_{N-1}(z \mid \tau)+\Theta_{N-1}\left(\left.z+\frac{1}{2^{N-1}} \right\rvert\, \tau\right)\right)
\end{aligned}
$$

because $e^{i \pi}=-1$.
So if $z \mapsto \Theta(z \mid \tau)$ is identically 0 , then so is $z \mapsto \Theta_{N}(z \mid \tau)$ for every N.
But we also have

$$
\begin{aligned}
\left|\Theta_{N}(z \mid \tau)\right| & =\left|1+\sum_{\substack{n \in \mathbb{Z} \backslash\{0\} \\
2^{N} \mid n}} e^{\pi i n^{2} \tau} e^{2 \pi i n z}\right| \\
& \geq 1-\left|\sum_{n \in \mathbb{Z} \backslash\{0\}} e^{\pi i n^{2} \tau} e^{2 \pi i n z}\right| \\
& \geq 1-\sum_{n \in \mathbb{Z} \backslash\{0\}}^{2^{N} \mid n} \mid \\
& =1-e^{\pi i n^{2} \tau} e^{2 \pi i n z} \mid \\
& \geq 1-\sum_{n \in \mathbb{Z} \backslash\{0\}}^{2^{N} \mid n} \\
& \sum_{|n| \geq 2^{N}} e^{-\pi n^{2} \beta} e^{2 \pi n|z|}
\end{aligned}
$$

For sufficiently large N, this gives

$$
\begin{aligned}
\left|\Theta_{N}(z \mid \tau)\right| & \geq 1-\sum_{|n| \geq 2^{N}} e^{-|n|} \\
& \geq 1-\frac{2 e^{-2^{N}}}{1-e^{-1}} \\
& >0
\end{aligned}
$$

So there exists N for which $z \mapsto \Theta_{N}(z \mid \tau)$ is not identically 0 .
Therefore $z \mapsto \Theta(z \mid \tau)$ is not identically 0 .
Order ≥ 2.
Completing the square on $\pi i n^{2} \tau+2 \pi i n z$ shows that

$$
\Theta(z \mid \tau)=e^{-i \tau \pi \frac{z^{2}}{\tau^{2}}} \sum_{=: S\left(\frac{z}{\tau}\right)}
$$

Notice that $\forall k \in \mathbb{Z}: \quad S\left(\frac{z}{\tau}+k\right)=S\left(\frac{z}{\tau}\right)$.
Fixing $z_{0} \in \mathbb{C}$ with $\Theta\left(z_{0} \mid \tau\right) \neq 0$, we have $S\left(\frac{z_{0}}{\tau}\right) \neq 0$ and

$$
\begin{aligned}
\Theta\left(z_{0}+k \tau \mid \tau\right)= & e^{-i \tau \pi \frac{\left(z_{0}+k \tau\right)^{2}}{\tau^{2}}} S\left(\frac{z}{\tau}\right) \\
& \beta \pi k^{2}-i \pi\left[\tau\left(2 \frac{z_{0}}{\tau} k+\frac{z_{0}^{2}}{\tau^{2}}\right)+\alpha k^{2}\right] \\
(*) & e^{\left(\frac{z}{\tau}\right)}
\end{aligned}
$$

Write $z=z_{0}+k \tau$.
For sufficiently large k,

$$
\begin{gathered}
\operatorname{Re}(*) \geq \frac{1}{2} \beta \pi k^{2} \\
|k| \geq \frac{1}{2|\tau|}|z| \\
\operatorname{Re}(*) \geq \underbrace{\frac{\beta \pi}{8|\tau|^{2}}}_{=: B}|z|^{2}
\end{gathered}
$$

With $A:=\left|S\left(\frac{1}{z_{0}} \tau\right)\right|$, we have

$$
|\Theta(z \mid \tau)| \geq A e^{B|z|^{2}}
$$

and $A, B>0$.
Since this occurs for any sufficiently large z of the form $z=z_{0}+k$, we conclude that $z \mapsto \Theta(z \mid \tau)$ has order at least 2 .

Therefore $z \mapsto \Theta(z \mid \tau)$ has order 2.
[S] 4. (a)
A formula.
For any sequence $a_{n} \in \mathbb{C}$,

$$
\prod_{n=1}^{N}\left(1+a_{n}\right)=1+\sum_{1 \leq n_{1} \leq N} a_{n_{1}}+\sum_{1 \leq n_{1}<n_{2} \leq N} a_{n_{1}} a_{n_{2}}+\cdots+\sum_{1 \leq n_{1}<\cdots c_{N} \leq N} a_{n_{1}} \cdots a_{n_{N}}
$$

(This can easily be proven by induction.)
So if $a_{n} \geq 0$, we have the formula

$$
\prod_{n=1}^{\infty}\left(1+a_{n}\right)=\sum_{k=0}^{\infty} \sum_{1 \leq n_{1}<\cdots c_{k}<\infty} a_{n_{1}} \cdots a_{n_{k}}
$$

Namely, $\prod\left(1+a_{n}\right)$ is the sum of all products of distinctly indexed terms of the sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$.
Order ≤ 2.

$$
\begin{aligned}
|F(z)| & =\prod_{n=1}^{\infty}\left|1-e^{-2 \pi n t} e^{2 \pi i z}\right| \\
& \leq \prod_{n=1}^{\infty}\left(1+e^{-2 \pi n t} e^{2 \pi|z|}\right)
\end{aligned}
$$

Substituting $r=e^{2 \pi t}>1$ and $v=|z| / t$,
we use our formula to obtain

$$
\begin{aligned}
|F(z)| & \leq \prod_{n=1}^{\infty}\left(1+r^{v-n}\right) \\
& =\sum_{k=0}^{\infty} \sum_{1 \leq n_{1}<\cdots c_{k}<\infty} r^{k v-\left(n_{1}+\cdots+n_{k}\right)}
\end{aligned}
$$

Claim. Let $a \in \mathbb{Z}^{+}$. Then for each $k \geq 0$,

$$
\sum_{a \leq n_{1}<\cdots c_{k}<\infty} r^{-\left(n_{1}+\cdots+n_{k}\right)}=r^{-k(a-1)} \prod_{j=1}^{k}\left(r^{j}-1\right)^{-1}
$$

Proof.

Induction on k.
Base case $(k=0): r^{-0}=\prod_{j=1}^{0}\left(r^{j}-1\right)^{-1}$.

Induction step:

$$
\begin{aligned}
\sum_{a \leq n_{1}<\cdots c_{k+1}<\infty} r^{-\left(n_{1}+\cdots+n_{k+1}\right)} & =\sum_{a \leq n_{1}<\infty} r^{-n_{1}} \sum_{n_{1}+1 \leq n_{2}<\cdots c_{k+1}<\infty} r^{-\left(n_{2}+\cdots+n_{k+1}\right)} \\
& =\sum_{a \leq n_{1}<\infty} r^{-n_{1}} r^{-k n_{1}} \prod_{j=1}^{k}\left(r^{j}-1\right)^{-1} \\
& =r^{-(k+1) a}\left(1-e^{-k+1}\right)^{-1} \prod_{j=1}^{k}\left(r^{j}-1\right)^{-1} \\
& =r^{-(k+1)(a-1)} \prod_{j=1}^{k+1}\left(r^{j}-1\right)^{-1}
\end{aligned}
$$

QED.
Thus our bound is

$$
\begin{aligned}
|F(z)| & \leq \sum_{k=0}^{\infty} r^{k v} \sum_{1 \leq n_{1}<\cdots c_{k}<\infty} r^{-\left(n_{1}+\cdots+n_{k}\right)} \\
& =\sum_{k=0}^{\infty} r^{k v} r^{-k(1-1)} \prod_{j=1}^{k}\left(r^{j}-1\right)^{-1} \\
& =\sum_{k=0}^{\infty} r^{k v} \prod_{j=1}^{k}\left(r^{j}-1\right)^{-1} \\
& \leq \sum_{k=0}^{\infty} r^{k v} \prod_{j=1}^{k} q r^{-j} \quad \text { where } q=\frac{r}{r-1} \\
& =\sum_{k=0}^{\infty} r^{k v} q^{k} r^{-k(k+1) / 2} \\
& =\sum_{k=0}^{\infty}\left(q r^{v-(k+1) / 2}\right)^{k}
\end{aligned}
$$

Pick n large enough that $q r^{-n}<1$.
(Note that q, n don't depend on v.)
Letting v be sufficiently large,
we have

$$
\begin{aligned}
|F(z)| & \leq \sum_{0 \leq k}^{<2 v+n-1}\left(q r^{v-(k+1) / 2}\right)^{k}+\sum_{2 v+n-1 \leq k}^{<\infty}\left(q r^{v-(k+1) / 2}\right)^{k} \\
& \leq \sum_{0 \leq k}^{<2 v+n-1}\left(q r^{v}\right)^{3 v}+\sum_{2 v+n-1 \leq k}^{<\infty}\left(q r^{-n}\right)^{k} \\
& \leq(2 v+n) q^{3 v} r^{3 v^{2}}+\frac{1}{1-q r^{-n}} \\
& \leq A r^{v^{2}} r^{3 v^{2}} \\
& \leq A r^{4 v^{2}}
\end{aligned}
$$

for large enough $A>0$.
This bound holds when v is sufficiently large;
when v isn't, it will still hold if A is chosen large enough.
Remembering our substitutions, we obtain

$$
|F(z)| \leq A e^{\frac{8 \pi}{t}|z|^{2}}
$$

QED.
Order ≥ 2.
Let

$$
z=1+i y
$$

with $y<0$.
If y is sufficiently large, then

$$
-y \geq \frac{1}{2}|z|
$$

Hence, with $q=\frac{1}{2}|z|$,

$$
\begin{aligned}
|F(z)| & =\prod_{n=1}^{\infty}\left(1+e^{2 \pi n t} e^{-2 \pi y}\right) \\
& \geq \prod_{n=1}^{\infty}\left(1+e^{2 \pi n t} e^{2 \pi \frac{1}{2}|z|}\right) \\
& =\prod_{n=1}^{\infty}\left(1+r^{q-n}\right) \\
& =\sum_{k=0}^{\infty} r^{k q} \prod_{j=1}^{k}\left(r^{j}-1\right)^{-1} \\
& \geq \sum_{k=0}^{\infty} r^{k q} \prod_{j=1}^{k}\left(r^{j}\right)^{-1} \\
& \geq \sum_{k=0}^{\infty} r^{k q-k(k+1) / 2} \\
& \geq \sum_{k=0}^{\infty}\left(r^{q-(k+1) / 2}\right)^{k}
\end{aligned}
$$

For q sufficiently large, there exists an integer $K \geq 0$ with $\frac{1}{3} q \leq K \leq \frac{2}{3} q-1$, hence

$$
\begin{aligned}
|F(z)| & \geq\left(r^{q-(K+1) / 2}\right)^{K} \\
& \geq\left(r^{q-\frac{1}{3} q}\right)^{K} \\
& =\left(r^{\frac{2}{3} q}\right)^{K} \\
& \geq\left(r^{\frac{2}{3} q}\right)^{\frac{1}{3} q} \\
& =r^{\frac{2}{9} q^{2}} \\
& =e^{\frac{\pi}{9 t}|z|^{2}}
\end{aligned}
$$

Since this lower bound holds whenever $\operatorname{Re}(z)=1, \operatorname{Im}(z)<0$, and y sufficiently large, it holds for arbitrarily large z,
so F is of order ≥ 2.
Hence F has order 2.

