[G] 1.

(a) Answer is 2.

We now show by induction that
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Base case: [[)_, (1 + m) =2
Induction step: for N + 1 we have
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The infinite product is now
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(b) Answer is 5.

By part (a) we now have

(c) Answer is 4.
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The partial product formula holds by induction.

Base case is the first factor, %
A4N—-1_N(N+2) _ 4
IN+t2 (N=D)(N+3) 1

Induction step is Ny3-



[G] 10.

<N <N
H (1 +22n) = Z 2"
0<n 0<k
1 h 1
~ 1 (when |z| < 1)

The partial product formula holds by induction.
Base case is the empty product 1.
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Induction step is (Z(ﬁk zk) (1 + z2N> = (ﬁk F 2 22k = o<k 2



[G] 14.
Throughout, k& # 0.
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(The sign + in the exponent is the same sign used in the index condition +m < +k < +tm.
If t > 1 then =+ is always +; if ¢ < 1 then =+ is always —.)
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Let M,, be the max of |R(£)/%| when +m < +k < £tm
and note that M,,, — 0 as m — oco.
Let r = min {1, ¢}.
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We also have

by inconsequentially changing the index condition.
Using integral bounds on (x), we have
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[S] 3.
Let 8 = Im(7). Order < 2.
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The last inequality holds because
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for some C, D > 0.
Letting A=C+ D andel—i—%,we now have A, B > 0 and

19(2|7)| < AeBlH

s0 z — ©(z|7) has order < 2.

Lemma. The function z — ©O(z|T) is not identically 0.
Proof.
Fix z.

For each integer N > 0, define
@N(Z|T) _ Z eﬂinz'reQﬂ'inz
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where the second “|” means divisibility.
Note that ©¢ = ©.

Notice that Vz € C:
5 (©0(z|T) +60(z+ 1| 7))
Os(z|7) = 5 (O1(2|7) + ©1(z + § | 7))

On(2|T) = 1 (ONn-1(2]T) + On-1(2 + 57— | T))

because ™ = —1.
So if z — O(z|7) is identically 0, then so is z — Oy (z|7) for every N.
But we also have
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For sufficiently large N, this gives

[On(z|T)]| >1— Z eIl

n|>2N
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So there exists N for which z — ©x(z|7) is not identically 0.
Therefore z — ©(z|7) is not identically 0.

Order > 2.
Completing the square on min?7 + 2mwinz shows that
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Notice that Vk € Z: S (2 + k) = S(2).
Fixing zp € C with O(z|7) # 0, we have S (%) # 0 and
X (zo+k7')2
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Write z = z9 + k7.
For sufficiently large k,
Re(x) > 1pmk?
[kl = 3]
Re(s) 2 gff |+
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With A = |S( 7)|, we have
10(z|7)| > AeBl*

and A, B > 0.
Since this occurs for any sufficiently large z of the form z = zp + k,
we conclude that z — O(z|7) has order at least 2.

Therefore z — ©(z|7) has order 2.



[S] 4. (a)
A formula.
For any sequence a,, € C,

N
H(1+G7L): 1+§ :anl +§ :anlanz + +§ QAny * Aoy
n=1 1<n1 <N 1<n;<n2<N 1<ni<--en<N

(This can easily be proven by induction.)
So if a,, > 0, we have the formula

oo 0o
H(1+an): 2 : E Any ~ Ay,
n=1 k=0 1<ni<---cp<oo

Namely, [[(1 + ay,) is the sum of all products of distinctly indexed terms of the sequence {a,}52 ;.

Order < 2.
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Substituting 7 = €2 > 1 and v = |2|/t,
we use our formula to obtain

Claim. Let a € ZT. Then for each k > 0,

k
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Proof.
Induction on k.

Base case (k=0): r 0= H?Zl(rj -1)~L



Induction step:
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QED.

Thus our bound is
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7 where g =
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k=0
Pick n large enough that gr=™ < 1.
(Note that ¢,n don’t depend on v.)
Letting v be sufficiently large,
we have
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for large enough A > 0.

This bound holds when v is sufficiently large;

when v isn’t, it will still hold if A is chosen large enough.
Remembering our substitutions, we obtain

8w, 2
F(z)| < et

QED.
Order > 2.
Let
z=1+1y
with y < 0.
If y is sufficiently large, then
-y > 3lz|

Hence, with ¢ = |z|,
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For ¢ sufficiently large, there exists an integer K > 0 with %q <K< %q — 1, hence

()| > (rmtenr2)t

v

2 2
:’["gq

= e%lzlz
Since this lower bound holds whenever Re(z) = 1, Im(z) < 0, and y sufficiently large,
it holds for arbitrarily large z,
so F'is of order > 2.

Hence F' has order 2.
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