
[G] 1.
(a) Answer is 2.

1 +
1

n(n+ 2)
=
n2 + 2n+ 1

n(n+ 2)

=
(n+ 1)2

n(n+ 2)

We now show by induction that

N∏
n=1

(
1 +

1

n(n+ 2)

)
=

2

1

N + 1

N + 2

Base case:
∏1
n=1

(
1 + 1

n(n+2)

)
= 2

1 .

Induction step: for N + 1 we have

N+1∏
n=1

(· · · ) =
2

1

N + 1

N + 2

(N + 2)2

(N + 1)(N + 3)

=
2

1

N + 2

N + 3

The infinite product is now

lim
N→∞

2

1

N + 1

N + 2
= 2

(b) Answer is 1
2 .

1− 1

n2
=
n2 − 1

n2

=

(
n2

(n− 1)(n+ 1)

)−1
=

(
1 +

1

(n− 1)(n+ 1)

)−1
By part (a) we now have

∞∏
n=2

(
1− 1

n2

)
=

∞∏
n=2

(
1 +

1

(n− 1)(n+ 1)

)−1
=

∞∏
n=1

(
1 +

1

n(n+ 2)

)−1
= 2−1

=
1

2

(c) Answer is 4.
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n2 − 1

n2 − 4
=

(n− 1)(n+ 1)

(n− 2)(n+ 2)

N∏
n=3

n2 − 1

n2 − 4
=

N∏
n=3

(n− 1)(n+ 1)

(n− 2)(n+ 2)

=
4

1

N − 1

N + 2

→ 4

The partial product formula holds by induction.
Base case is the first factor, 2·4

1·5 .

Induction step is 4
1
N−1
N+2

N(N+2)
(N−1)(N+3) = 4

1
N
N+3 .
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[G] 10.

<N∏
0≤n

(
1 + z2

n
)

=

<2N∑
0≤k

zk

→ 1

1− z
(when |z| < 1)

The partial product formula holds by induction.
Base case is the empty product 1.

Induction step is
(∑<2N

0≤k z
k
)(

1 + z2
N
)

=
∑<2N

0≤k +
∑2N

k=0 z
2N zk =

∑<2N+1

0≤k zk.
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[G] 14.
Throughout, k 6= 0. ∏

−m≤k≤tm

(
1 +

z

k

)
=

∏
−m≤k≤m

(
1 +

z

k

)
(−)

∏
±m<±k≤±tm

(
1 +

z

k

)±1
(−−)

(The sign ± in the exponent is the same sign used in the index condition ±m < ±k ≤ ±tm.
If t ≥ 1 then ± is always +; if t ≤ 1 then ± is always −.)
Now

(−) =

m∏
k=1

(
1− z2

k2

)
→ sinπz

πz

and

log(−−) = ±
∑

±m<±k≤±tm

log
(
1 + z

k

)
= ±

∑
±m<±k≤±tm

z
k +R

(
z
k

)
Taylor remainder

= ±z
∑

±m<±k≤±tm

1
k

(∗)

±
∑

±m<±k≤±tm

R( zk )

(∗∗)

Let Mm be the max of
∣∣R( zk )/ zk

∣∣ when ±m < ±k ≤ ±tm
and note that Mm → 0 as m→∞.
Let r = min {1, t}.
Then

|(∗∗)| =

∣∣∣∣∣∣±
∑

±m<±k≤±tm

z
k

(
R( zk )/ zk

)∣∣∣∣∣∣
≤

∑
±m<±k≤±tm

|z|
k

∣∣R( zk )/ zk
∣∣

≤
∑

±m<±k≤±tm

|z|
rmMm

≤ d|m− tm|e |z|rmMm

≤ (|m− tm|+ 1) |z|rmMm

= (|1− t|+ 1
m ) |z|r Mm

→ 0

We also have
(∗) =

∑
±m+1≤±k≤±tm

1
k

by inconsequentially changing the index condition.
Using integral bounds on (∗), we have

(∗) ≤ ±
∫ tm

m

1
xdx = ± log t
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and

(∗) ≥ ±
∫ tm∓1

m

1

x+ 1
dx = log

(
t∓ 1

m

)
→ ± log t

so (∗)→ ± log t.

Conclusion:

lim
m→∞

∏
−m≤k≤tm

(
1 + z

k

)
= lim
m→∞

∏
−m≤k≤m

(
1 +

z

k

)
(−)

∏
±m<±k≤±tm

(
1 +

z

k

)±1
(−−)

=
sinπz

πz
exp

 lim
m→∞

±z
∑

±m<±k≤±tm

1
k

(∗)

±
∑

±m<±k≤±tm

R( zk )

(∗∗)


=

sinπz

πz
exp (±z(± log t)± 0)

=
sinπz

πz
exp(z log t)

=
sinπz

πz
tz
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[S] 3.
Let β = Im(τ). Order ≤ 2.

|Θ(z|τ)| ≤
∑
n∈Z

∣∣∣eπin2τe2πinz
∣∣∣

≤
∑
n∈Z

e−πn
2βe−2πn|z|

=
∑
n∈Z

e
−πβ

(
(n−
|z|
β )2−

|z|2
β2

)
︸ ︷︷ ︸

=:an

=
∑

|n|<2
|z|
β

an +

∞∑
k=0

a
d2
|z|
β e+k

+

∞∑
k=0

a
−(d2

|z|
β e+k)

≤
∑

|n|<2
|z|
β

an +
2

1− e−2π|z|

The last inequality holds because ∣∣∣±(d2 |z|β e+ k)− |z|β
∣∣∣ ≥ |z|β + k(

±(d2 |z|β e+ k)− |z|β
)2
− |z|

2

β2 ≥ 2 |z|β k + k2 ≥ 2 |z|β k

−πβ
(
±(d2 |z|β e+ k)− |z|β

)2
− |z|

2

β2 ≤ −2π|z|k

a
±(d2

|z|
β e+k)

= e
−πβ

(
±(d2

|z|
β e+k)−

|z|
β

)2

−
|z|2
β2 ≤ e−2π|z|k

∞∑
k=0

a
±(d2

|z|
β e+k)

≤ 1

1− e−2π|z|

Next, observe that

−πβ
(

(n− |z|β )2 − |z|
2

β2

)
≤ −πβ(− |z|

2

β2 ) = π
β |z|

2

So for all n,

an ≤ e
π
β |z|

2

This gives

|Θ(z|τ)| ≤
∑

|n|<2
|z|
β

an +
2

1− e−2π|z|

≤
∑

|n|<2
|z|
β

e
π
β |z|

2

+
2

1− e−2π|z|

≤ (2 |z|β + 1)e
π
β |z|

2

+
2

1− e−2π|z|

≤ Ce|z|
2

e
π
β |z|

2

+De
(1+

π
β )|z|2
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for some C,D > 0.
Letting A = C +D and B = 1 + π

β , we now have A,B > 0 and

|Θ(z|τ)| ≤ AeB|z|
2

so z 7→ Θ(z|τ) has order ≤ 2.

Lemma. The function z 7→ Θ(z|τ) is not identically 0.
Proof.

Fix z.

For each integer N ≥ 0, define

ΘN (z|τ) =
∑
n∈Z
2N |n

eπin
2τe2πinz

where the second “|” means divisibility.
Note that Θ0 = Θ.
Notice that ∀z ∈ C:

Θ1(z|τ) = 1
2 (Θ0(z|τ) + Θ0(z + 1 | τ))

Θ2(z|τ) = 1
2

(
Θ1(z|τ) + Θ1(z + 1

2 | τ)
)

...

ΘN (z|τ) = 1
2

(
ΘN−1(z|τ) + ΘN−1(z + 1

2N−1 | τ)
)

...

because eiπ = −1.
So if z 7→ Θ(z|τ) is identically 0, then so is z 7→ ΘN (z|τ) for every N .
But we also have

|ΘN (z|τ)| =

∣∣∣∣∣∣∣∣∣1 +
∑

n∈Z\{0}
2N |n

eπin
2τe2πinz

∣∣∣∣∣∣∣∣∣
≥ 1−

∣∣∣∣∣∣∣∣∣
∑

n∈Z\{0}
2N |n

eπin
2τe2πinz

∣∣∣∣∣∣∣∣∣
≥ 1−

∑
n∈Z\{0}
2N |n

∣∣∣eπin2τe2πinz
∣∣∣

= 1−
∑

n∈Z\{0}
2N |n

e−πn
2βe2πn|z|

≥ 1−
∑
|n|≥2N

e−πn
2βe2πn|z|
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For sufficiently large N , this gives

|ΘN (z|τ)| ≥ 1−
∑
|n|≥2N

e−|n|

≥ 1− 2e−2
N

1− e−1
> 0

So there exists N for which z 7→ ΘN (z|τ) is not identically 0.
Therefore z 7→ Θ(z|τ) is not identically 0.

Order ≥ 2.
Completing the square on πin2τ + 2πinz shows that

Θ(z|τ) = e−iτπ
z2

τ2

∑
n∈Z

eiτπ(n+
z
τ )

2

=:S( zτ )

Notice that ∀k ∈ Z : S
(
z
τ + k

)
= S( zτ ).

Fixing z0 ∈ C with Θ(z0|τ) 6= 0, we have S
(
z0
τ

)
6= 0 and

Θ(z0 + kτ | τ) = e−iτπ
(z0+kτ)

2

τ2 S( zτ )

= e

βπk2 − iπ
[
τ(2 z0τ k +

z20
τ2 ) + αk2

]
(∗) S( zτ )

Write z = z0 + kτ .
For sufficiently large k,

Re(∗) ≥ 1
2βπk

2

|k| ≥ 1
2|τ | |z|

Re(∗) ≥ βπ
8|τ |2

=:B

|z|2

With A := |S( 1
z0
τ)|, we have

|Θ(z|τ)| ≥ AeB|z|
2

and A,B > 0.
Since this occurs for any sufficiently large z of the form z = z0 + k,
we conclude that z 7→ Θ(z|τ) has order at least 2.

Therefore z 7→ Θ(z|τ) has order 2.
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[S] 4. (a)
A formula.

For any sequence an ∈ C,

N∏
n=1

(1 + an) = 1 +
∑

1≤n1≤N

an1 +
∑

1≤n1<n2≤N

an1an2 + · · · +
∑

1≤n1<···cN≤N

an1 · · · anN

(This can easily be proven by induction.)
So if an ≥ 0, we have the formula

∞∏
n=1

(1 + an) =

∞∑
k=0

∑
1≤n1<···ck<∞

an1
· · · ank

Namely,
∏

(1 + an) is the sum of all products of distinctly indexed terms of the sequence {an}∞n=1.

Order ≤ 2.

|F (z)| =
∞∏
n=1

∣∣1− e−2πnte2πiz∣∣
≤
∞∏
n=1

(
1 + e−2πnte2π|z|

)

Substituting r = e2πt > 1 and v = |z|/t,
we use our formula to obtain

|F (z)| ≤
∞∏
n=1

(
1 + rv−n

)
=

∞∑
k=0

∑
1≤n1<···ck<∞

rkv−(n1+···+nk)

Claim. Let a ∈ Z+. Then for each k ≥ 0,

∑
a≤n1<···ck<∞

r−(n1+···+nk) = r−k(a−1)
k∏
j=1

(rj − 1)−1

Proof.
Induction on k.
Base case (k = 0): r−0 =

∏0
j=1(rj − 1)−1.
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Induction step: ∑
a≤n1<···ck+1<∞

r−(n1+···+nk+1) =
∑

a≤n1<∞

r−n1

∑
n1+1≤n2<···ck+1<∞

r−(n2+···+nk+1)

=
∑

a≤n1<∞

r−n1r−kn1

k∏
j=1

(rj − 1)−1

= r−(k+1)a(1− e−k+1)−1
k∏
j=1

(rj − 1)−1

= r−(k+1)(a−1)
k+1∏
j=1

(rj − 1)−1

QED.

Thus our bound is

|F (z)| ≤
∞∑
k=0

rkv
∑

1≤n1<···ck<∞

r−(n1+···+nk)

=

∞∑
k=0

rkvr−k(1−1)
k∏
j=1

(rj − 1)−1

=

∞∑
k=0

rkv
k∏
j=1

(rj − 1)−1

≤
∞∑
k=0

rkv
k∏
j=1

qr−j where q = r
r−1

=

∞∑
k=0

rkvqkr−k(k+1)/2

=

∞∑
k=0

(
qrv−(k+1)/2

)k
Pick n large enough that qr−n < 1.
(Note that q, n don’t depend on v.)
Letting v be sufficiently large,
we have

|F (z)| ≤
<2v+n−1∑

0≤k

(
qrv−(k+1)/2

)k
+

<∞∑
2v+n−1≤k

(
qrv−(k+1)/2

)k
≤
<2v+n−1∑

0≤k

(qrv)
3v

+

<∞∑
2v+n−1≤k

(
qr−n

)k
≤ (2v + n)q3vr3v

2

+
1

1− qr−n

≤ Arv
2

r3v
2

≤ Ar4v
2
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for large enough A > 0.
This bound holds when v is sufficiently large;
when v isn’t, it will still hold if A is chosen large enough.
Remembering our substitutions, we obtain

|F (z)| ≤ Ae
8π
t |z|

2

QED.

Order ≥ 2.
Let

z = 1 + iy

with y < 0.
If y is sufficiently large, then

−y ≥ 1
2 |z|

Hence, with q = 1
2 |z|,

|F (z)| =
∞∏
n=1

(
1 + e2πnte−2πy

)
≥
∞∏
n=1

(
1 + e2πnte2π

1
2 |z|
)

=

∞∏
n=1

(
1 + rq−n

)
=

∞∑
k=0

rkq
k∏
j=1

(rj − 1)−1

≥
∞∑
k=0

rkq
k∏
j=1

(rj)−1

≥
∞∑
k=0

rkq−k(k+1)/2

≥
∞∑
k=0

(
rq−(k+1)/2

)k
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For q sufficiently large, there exists an integer K ≥ 0 with 1
3q ≤ K ≤

2
3q − 1, hence

|F (z)| ≥
(
rq−(K+1)/2

)K
≥
(
rq−

1
3 q

)K
=

(
r
2
3 q

)K
≥
(
r
2
3 q

) 1
3 q

= r
2
9 q

2

= e
π
9t |z|

2

Since this lower bound holds whenever Re(z) = 1, Im(z) < 0, and y sufficiently large,
it holds for arbitrarily large z,
so F is of order ≥ 2.

Hence F has order 2.
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