
[G] p. 356 ex 15.
For n ≥ 0 define

an(z) =

{
0 n = 0
n
z+n

(
n+1
n

)z
n > 0

Lemma. Let N ∈ Z+. The product
<∞∏
N≤n

an(z)

converges on DN (0) to a holomorphic nonvanishing function.
Proof.

The factors an are holomorphic on DN (0),
hence it suffices to show uniform nonzero convergence of the product
on compact subsets of DN (0).
So let C ⊆ DN (0) be compact, and let R < N with |z| ≤ R on C.

For each n, z:

an(z) =
n

z + n

(
n+ 1

n

)z
=
(

1 +
z

n

)−1(
1 +

1

n

)z
= e−

∑<∞
1≤k(−1)

k+1 zk

nk /k e
∑<∞

1≤k(−1)
k+1 z

nk /k

= e
∑<∞

2≤k(−1)
k+1 z−zk

nk /k

=: ebn(z)

So the product is
<∞∏
N≤n

ebn(z) = e
∑<∞

N≤n bn(z)

Defining

cn =

(
R

1− 1/N
+

R2

1−R/N

)
1

n2

we find that cn ≥ 0,
∑
cn <∞, and

∀n≥N ∀z ∈ C : |bn(z)| ≤ cn
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We justify this inequality.

|bn(z)| ≤
<∞∑
2≤k

|z − zk|
nk

/k

≤
<∞∑
2≤k

|z|
nk
/k +

<∞∑
2≤k

|z|k

nk
/k

≤ |z|/n2

1− 1/n
+
|z|2/n2

1− |z|/n

≤ R/n2

1− 1/N
+

R2/n2

1−R/N

=

(
R

1− 1/N
+

R2

1−R/N

)
1

n2

= cn

Write S =
∑<∞
N≤n cn.

For any integers P,Q ≥ N (WLOG P ≤ Q) and any z ∈ C:∣∣∣∣∣∣
<P∏
N≤n

an(z)−
<Q∏
N≤n

an(z)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
<P∏
N≤n

an(z)

∣∣∣∣∣∣
∣∣∣∣∣∣1−

<Q∏
P≤n

an(z)

∣∣∣∣∣∣
≤

<P∏
N≤n

e|bn(z)|

∣∣∣∣∣∣1−
<Q∏
P≤n

ebn(z)

∣∣∣∣∣∣
≤ e

∑<∞
N≤n cn

∣∣∣1− e∑<Q
P≤n

bn(z)
∣∣∣

Since
∑
bn(z) converges uniformly,

we find that as P →∞,

e
∑<Q

P≤n
bn(z) → 1 uniformly,

hence the above expression converges uniformly to 0.

This shows that the sequence of partial products is uniformly Cauchy,
hence uniformly converges.

It only remains to show that the product is nonvanishing.
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This comes by ∣∣∣∣∣∣
<∞∏
N≤n

an(z)

∣∣∣∣∣∣ =

<∞∏
N≤n

|ebn(z)|

≥
<∞∏
N≤n

e−|bn(z)|

≥
<∞∏
N≤n

e−|cn|

= e
∑<∞

N≤n−|cn|

> 0

since the infinite sum is finite.

QED.

Convergence of Γ to a meromorphic function
whose poles are simple poles at each point of Z≤0.

For each k ∈ Z≥0, define on Dk+1(0) a function

Γk = a0 · · · ak−1
<∞∏

k+1≤n

an

This is a product of finitely many meromorphic functions (k + 1 of them),
each nonvanishing and finite at −k,
and each finite outside of Z≤0.

Furthermore, ak is a meromorphic function with a simple pole at −k,
and no other poles.
Hence the function

Γ = ak ·

a0 · · · ak−1 <∞∏
k+1≤n

an


is meromorphic on Dk+1(0) with a simple pole at −k,
and no poles outside Z≤0.

Since k was arbitrary,
we find that Γ is meromorphic on C =

⋃
Dk+1(0)

and its poles are simple poles at each point of Z≤0.

Limit.
The m-th partial product is

<n∏
0≤n

an(z) =
1

z

1

z + 1

2

z + 2
· · · m− 1

z +m− 1

(
2

1

3

2
· · · m

m− 1

)z
=

(m− 1)!mz

z(z + 1) · · · (z +m− 1)
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Therefore

Γ(z) = lim
m→∞

(m− 1)!mz

z(z + 1) · · · (z +m− 1)

Recursion relation.

Γ(z + 1) = lim
m→∞

(m− 1)!m(z+1)

(z + 1)(z + 2) · · · (z +m)

= lim
m→∞

m!mz

(z + 1)(z + 2) · · · (z +m)

= z lim
m→∞

m!mz

z(z + 1)(z + 2) · · · (z +m)

= z lim
m→∞

(m− 1)!(m− 1)z

z(z + 1)(z + 2) · · · (z +m− 1)

= zΓ(z)

Factorial.
Holds for n = 0, since

Γ(0 + 1) = lim
m→∞

(m− 1)!m1

1 · 2 · · ·m
= lim
m→∞

1

= 1

= 0!

For each subsequent n, we have

Γ(n+ 1) = nΓ(n)

= n (n− 1)!

= n!

QED.
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[G] p. 356 ex 16.
Convention.

By default, sums and products range only over those k for which αk 6= 0.
However, other statements and expressions involving k will, by default, range over all k.

(a)
Preliminaries.

Let m = # {k | αk = 0}.
(This is finite because |αk| → 1 because

∑
all k(1− |αk|) <∞.)

The product in question will be written as

B(z) = zm
∏ αk
|αk|

αk − z
1− αkz

(We will show that the product converges in C∗ on C∗ \ E, hence that B is defined there.)

Regard each factor of B as a meromorphic function on C∗.

Lemma.
∏
|αk| converges in C \ {0}.

Proof of lemma.
|αk| = 1− (1− |αk|) and we’re given that

∑
(1− |αk|) converges (absolutely, since its terms are

nonnegative), hence the product converges in C and is 0 iff one of its factors is.
None of its factors is 0 (since the product is taken over all k with αk 6= 0) so the product is
nonzero, completing the proof of the lemma.

More preliminaries.
Observe that

αk
−1 − αk = αk

−1(1− |αk|2)

= αk
−1(1 + |αk|)(1− |αk|)

We calculate in parallel.

αk
|αk|

αk − z
1− αkz

(
αk
|αk|

αk − z
1− αkz

)−1
=

αk − z
αk
−1 − z

|αk|−1 =
αk
−1 − z
αk − z

|αk|

=

(
1 +

αk − αk−1

αk
−1 − z

)
|αk|−1 =

(
1 +

αk
−1 − αk
αk − z

)
|αk|

=

(
1− αk

−1(1 + |αk|)
αk
−1 − z

(1− |αk|)
)
|αk|−1 =

(
1 +

αk
−1(1 + |αk|)
αk − z

(1− |αk|)
)
|αk|
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Hence, writing c =
∏
|αk|,

B(z) = c−1(1− (1− z))m
∏
1− αk

−1(1 + |αk|)
αk
−1 − z

(1− |αk|)︸ ︷︷ ︸
=:fk(z)


1

B
(z) = c (1− (1− z−1))m

∏
1 +

αk
−1(1 + |αk|)
αk − z

(1− |αk|)︸ ︷︷ ︸
=:gk(z)


Here we have defined fk and gk for each k with αk 6= 0.
For k with αk = 0, define fk(z) = 1− z and gk(z) = (1− z−1).
This allows us to write

B(z) = c−1
∏
all k

(1− fk(z))

1

B
(z) = c

∏
all k

(1− gk(z))

Now define Z = {αk} and P =
{
αk
−1}, allowing αk = 0.

These are the zeros and poles, respectively, of the factors of B, as well as of fk.
Hence P are the poles of the fk
and Z are the poles of the gk.

And finally, observe that since |αk| → 1,
the accumulation points of αk on ∂D
are precisely the accumulation points of αk, which
are precisely the accumulation points of αk

−1

Theorem. B converges normally on C∗ \ E as K →∞.

Gamelin defines the phrase “converges normally” on p. 316;
on the same page are some relevant facts about the spherical metric σ.
(We will only use the Euclidean metric, which will suffice
due to the inversion and equivalence facts on that page.)

Proof of theorem.
Let C ⊆ C∗ \ E be compact.

Case 1: C ∩ P = ∅.
There exist constants A,R > 0 such that for all z ∈ C and all sufficiently large k:

|αk−1 − z| ≥ A
|αk|−1 ≤ R

For k such that αk 6= 0, these inequalities imply that

|fk(z)| ≤ 2R

A
(1− |αk|)
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(Here we’ve used the fact that αk ∈ D.)
Now let

uk =

{
2R
A (1− |αk|) |fk(z)| ≤ 2R

A (1− |αk|)
maxC |fk| otherwise

the second case occurs for finitely many k;
the maximum exists because C is compact and has no poles of the fk.

Observe that uk ≥ 0,
∑
uk <∞, and ∀k∀z∈C : |fk(z)| ≤ uk.

Hence the product ∏
all k

(1− fk(z))

converges uniformly on C (Euclidean metric),
and so the product

B(z) = c−1
∏
all k

(1− fk(z))

converges uniformly on C (Euclidean metric), and hence is holomorphic.
(Note for later that B is 0 iff only one of its factors is.)

Since B is holomorphic on C, we see that B(C) is a compact subset of C,
hence σ|B(C)×B(C) is equivalent to the Euclidean metric,
hence B converges uniformly on C with respect to σ, as desired.

Case 2: C ∩ Z = ∅.
This will be similar to the previous case.

There exist constants A,R > 0 such that for all z ∈ C and all sufficiently large k:

|αk − z| ≥ A
|αk|−1 ≤ R

For k such that αk 6= 0, these inequalities imply that

|gk(z)| ≤ 2R

A
(1− |αk|)

(Here we’ve used the fact that αk ∈ D.)
Now let

vk =

{
2R
A (1− |αk|) |gk(z)| ≤ 2R

A (1− |αk|)
maxC |vk| otherwise

the second case occurs for finitely many k;
the maximum exists because C is compact and has no poles of the gk.

Observe that vk ≥ 0,
∑
vk <∞, and ∀k∀z∈C : |gk(z)| ≤ vk.

Hence the product ∏
all k

(1− gk(z))

converges uniformly on C (Euclidean metric),
and so the product

1

B
(z) = c

∏
all k

(1− gk(z))
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converges uniformly on C (Euclidean metric), and hence is holomorphic.
(Note for later that 1

B is 0 iff only one of its factors is,
hence B is ∞ iff one of its factors is.)

Since 1
B is holomorphic on C, we see that 1

B (C) is a compact subset of C,
hence σ| 1

B (C)× 1
B (C)

is equivalent to the Euclidean metric.

Noting also the identity
∀z, w ∈ C∗ : σ(z, w) = σ( 1

z ,
1
w )

we find that B converges uniformly on C with respect to σ, as desired.
Case 3: otherwise.

C = C1 ∪ C2

for some compact subsets C1, C2 disjoint from P,Z respectively,
hence B converges uniformly on C by the previous cases.

Since C was arbitrary,
we find that the product converges uniformly on every compact subset of C∗ \ E,
proving the theorem.

Conclusion.
By a theorem of Gamelin, we now see that B is meromorphic or identically ∞.
Hence it is meromorphic (since it’s bounded on D, as we will see presently).

Examining the formula

B(z) =
∏
all k

{
αk

|αk|
αk−z
1−αkz

αk 6= 0

z αk = 0

and recalling SS ch 1 ex 7 from hw 1,
we find that each factor of B has magnitude

< 1 if z ∈ D
= 1 if z ∈ ∂D

hence |B| is < 1 on D and = 1 on ∂D.

Finally, recalling Note for later from Cases 1 and 2 of our theorem,
we find that the zeros of B are precisely αk
and the poles are precisely αk

−1.

(b)
Let C ⊆ D be compact.
Let R < 1 with |z| ≤ R on C.

Magnitude of Blaschke factor. For all z ∈ C,w ∈ D:∣∣∣∣ w − z1− wz

∣∣∣∣ ≤ |w|1/2
Proof.

Let z ∈ C,w ∈ D.
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Write z = x+ iy, w = u+ iv.

0 ≤
[
|w|2 − 1

] [
|z|2 − 1 + (1−R2)

]
0 ≤ 1 + |w|2|z|2 − |w|2 − |z|2 − (1−R2)(1− |w|2)

|w|2 + |z|2 ≤ 1 + |w|2|z|2 − (1−R2)(1− |w|2)

|w|2 + |z|2 − 2ux− 2vy ≤ 1 + |w|2|z|2 − 2(ux+ vy)− (1−R2)(1− |w|2)

|w − z|2 ≤ |1− wz|2 − (1−R2)(1− |w|2)∣∣∣∣ w − z1− wz

∣∣∣∣2 ≤ 1− (1−R2)(1 + |w|)
|1− wz|2

(1− |w|)

≤ 1− (1−R2)

(1 +R)2
(1− |w|)

≤ 1− (1− |w|)
≤ |w|∣∣∣∣ w − z1− wz

∣∣∣∣ ≤ |w|1/2
QED.

Lemma. Let an ≥ 0 and
∑
n<∞ an = +∞. Then

∏
n<∞(1 + an) = +∞.

Proof.
Expanding partial products,∏

n<N

(1 + an) = 1 +
∑
n<N

an + (other nonnegative terms)

≥
∑
n<N

an

hence
∏
n<∞(1 + an) ≥

∑
n<∞ an = +∞, QED.

Lemma. Suppose there are finitely many k such that αk = 0. Then∏
|αk| = 0

where the product only uses those k for which αk 6= 0.
Proof.

Combining the hypothesis with the fact that∑
all k

(1− |αk|) = +∞

we find that ∑
(1− |αk|) = +∞

hence ∏
|αk|−1 =

∏
(1 + |αk|−1(1− |αk|))

≤
∏

(1 + (1− |αk|))

= +∞
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∏
|αk| =

(∏
|αk|−1

)−1
= (+∞)−1

= 0

QED.

Uniform convergence to 0.
The K-th partial product satisfies∣∣∣∣∣ ∏

all k<K

{
αk

|αk|
αk−z
1−αkz

αk 6= 0

z αk = 0

∣∣∣∣∣ ≤
∏

all k<K

{
|αk|1/2 αk 6= 0

R αk = 0

and the RHS approaches 0 as K →∞. Reason:

If there are infinitely many k such that αk = 0,
then RHS→ 0 because R < 1 and each αk satisfies |αk|1/2 ≤ 1.
Otherwise, RHS→ 0 because R ≤ 1 and

∏
|αk| = 0.

Since the magnitude of the product of interest is bounded above by RHS for all z,
the product converges uniformly to 0.

Since C was an arbitary compact subset of D,
the products converge uniformly to 0 on every compact subset of D.
QED.
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[G] p. 360 2.
Construction:

f(z) =

<∞∏
0≤n

an(z)

where

an(z) =

{
z n = 0

1− z
n2 n > 0

Note that each an is entire.
Convergence and zeros:
Let C ⊆ C be compact.
Let R > 0 with |z| ≤ R on C.
Defining

cn =

{
B + 1 n = 0

B/n2 n > 0

we find that cn ≥ 0,
∑<∞

0≤n cn <∞, and
|an(z)− 1| ≤ cn

for any z ∈ C.

By a theorem of SS,
this shows that the product converges uniformly to a holomorphic function on C
and is 0 precisely when one of its factors is.

Since C ⊆ C is arbitrary,
this shows that the product converges to an entire function
whose zeros are precisely n2 for n ≥ 0.

To see why the zeros are simple,
let n0 ≥ 0 and consider the function

fn0
(z) =

∏
0≤n<∞
n 6=n0

an(z)

By essentially the same argument as above,
we find that this function is entire and does not vanish at n0.
Observing that f = an0

fn0
,

we find that f has exactly as many zeros at n0 as an0 does,
hence it has exactly one, by the definition of an0 .

11



[G] p. 360 5.
Construction.

f(z) = z
∏

r∈(0,∞)

∏
u∈Z[i]
|u|=r

arg u∈[0,π/2)

(
1− z4

u4

)

Entirety and zeros.
Let C ⊆ C be compact, and let R > 0 with |z| ≤ R on C.
For any z ∈ C and any u in Z[i] \ {0}, we have

|z − 1| ≤ R+ 1∣∣∣∣− z4u4
∣∣∣∣ ≤ B4

|u|4

Hence, to prove that the product converges uniformly
to a holomorphic function
which vanishes precisely when one of its factors does,
it suffices to show that

(R+1) +
∑

r∈(0,∞)

∑
u∈Z[i]
|u|=r

arg u∈[0,π/2)

(
1− R4

|u|4

)
<∞

Proof of the above convergence:

(R+ 1) +
∑

r∈[1,∞)

∑
u∈Z[i]
|u|=r

arg u∈[0,π/2)

R4

|u|4

≤ (R+ 1) +R4
∞∑
n=1

∑
r∈[n,n+1)

∑
u∈Z[i]
|u|=r

arg u∈[0,π/2)

1

n4

= (R+ 1) +R4
∞∑
n=1

# Z[i] ∩ (Dn+1(0) \Dn(0))

n4

≤ (R+ 1) +R4
∞∑
n=1

4n2 + 8n+ 4

n4

<∞

The second-to-last inequality comes from covering an annulus with a square:

Dn+1(0) \Dn(0) ⊆ (−(n+1), (n+1))2

# Z[i] ∩ Dn+1(0) \Dn(0)

≤ # Z[i] ∩ (−(n+1), (n+1))2

≤ [(n+1)−−(n+1)]
2

= 4n2 + 8n+ 4
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We have now proven that the product
converges uniformly on C
to a holomorphic function f
that vanishes precisely when one of its factors does.
Since C ⊆ C was an arbitrary compact set,
f is entire.

f−1(0) = Z[i] and all zeros are simple.
We factor the factors of f .

z is linear; its only root is 0, simple.
All other factors are in one-to-one correspondence
with the members of the quadrant

S = {u ∈ Z[i] \ {0} | 0 ≤ arg u < π/2}

and we have the factorization

1− z4

u4
=

1

u4
(u− z)(iu− z)(i2u− z)(i3u− z)

hence its roots are simple and they are u, . . . i3u,
and no other factor has roots at those points.

This proves that f has a root at every Gaussian integer and nowhere else.
To show that each root is simple,
we let u ∈ Z[i] and write

au(z)

to denote the factor in the product formula for f
that has a root at u.
For example, a0(z) = z and a2i(z) = (1− z4

16 ).
If, in the product formula for f ,
we replace au with au/(u− z) (with the singularity removed),
we can show by essentially the same argument as before
that the new function fu defined by this product
vanishes only when one of its factors does,
hence does not vanish at u,
and therefore our function f = (u− z)fu has a simple root at u.
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