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Now we recall the simple fact that whenever n != 0, the integral of e−inθ

over any circle centered at the origin vanishes. Therefore

an =
1
πrn

∫ 2π

0

[u(reiθ) − Crs]e−inθ dθ when n > 0,

hence

|an| ≤
1
πrn

∫ 2π

0

[Crs − u(reiθ)] dθ ≤ 2Crs−n − 2Re(a0)r−n.

Letting r tend to infinity along the sequence given in the hypothesis of
the lemma proves that an = 0 for n > s. This completes the proof of the
lemma and of Hadamard’s theorem.

6 Exercises

1. Give another proof of Jensen’s formula in the unit disc using the functions
(called Blaschke factors)

ψα(z) =
α− z
1 − αz

.

[Hint: The function f/(ψz1 · · ·ψzN ) is nowhere vanishing.]

2. Find the order of growth of the following entire functions:

(a) p(z) where p is a polynomial.

(b) ebzn
for b "= 0.

(c) eez
.

3. Show that if τ is fixed with Im(τ ) > 0, then the Jacobi theta function

Θ(z|τ ) =
∞∑

n=−∞
eπin2τe2πinz

is of order 2 as a function of z. Further properties of Θ will be studied in Chap-
ter 10.

[Hint: −n2t + 2n|z| ≤ −n2t/2 when t > 0 and n ≥ 4|z|/t.]

4. Let t > 0 be given and fixed, and define F (z) by

F (z) =
∞∏

n=1

(1 − e−2πnte2πiz).

Note that the product defines an entire function of z.
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(a) Show that |F (z)| ≤ Aea|z|2 , hence F is of order 2.

(b) F vanishes exactly when z = −int + m for n ≥ 1 and n, m integers. Thus,
if zn is an enumeration of these zeros we have

∑ 1
|zn|2

= ∞ but
∑ 1

|zn|2+ε
< ∞.

[Hint: To prove (a), write F (z) = F1(z)F2(z) where

F1(z) =
N∏

n=1

(1 − e−2πnte2πiz) and F2(z) =
∞∏

n=N+1

(1 − e−2πnte2πiz).

Choose N ≈ c|z| with c appropriately large. Then, since

( ∞∑

N+1

e−2πnt

)
e2π|z| ≤ 1 ,

one has |F2(z)| ≤ A. However,

|1 − e−2πnte2πiz| ≤ 1 + e2π|z| ≤ 2e2π|z|.

Thus |F1(z)| ≤ 2Ne2πN|z| ≤ ec′|z|2 . Note that a simple variant of the function F
arises as a factor in the triple product formula for the Jacobi theta function Θ,
taken up in Chapter 10.]

5. Show that if α > 1, then

Fα(z) =

∫ ∞

−∞
e−|t|αe2πizt dt

is an entire function of growth order α/(α− 1).

[Hint: Show that

− |t|α

2
+ 2π|z||t| ≤ c|z|α/(α−1)

by considering the two cases |t|α−1 ≤ A|z| and |t|α−1 ≥ A|z|, for an appropriate
constant A.]

6. Prove Wallis’s product formula

π
2

=
2 · 2
1 · 3 · 4 · 4

3 · 5 · · · 2m · 2m
(2m − 1) · (2m + 1)

· · · .

[Hint: Use the product formula for sin z at z = π/2.]

7. Establish the following properties of infinite products.
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(a) Show that if
∑

|an|2 converges, then the product
∏

(1 + an) converges to a
non-zero limit if and only if

∑
an converges.

(b) Find an example of a sequence of complex numbers {an} such that
∑

an

converges but
∏

(1 + an) diverges.

(c) Also find an example such that
∏

(1 + an) converges and
∑

an diverges.

8. Prove that for every z the product below converges, and

cos(z/2) cos(z/4) cos(z/8) · · · =
∞∏

k=1

cos(z/2k) =
sin z

z
.

[Hint: Use the fact that sin 2z = 2 sin z cos z.]

9. Prove that if |z| < 1, then

(1 + z)(1 + z2)(1 + z4)(1 + z8) · · · =
∞∏

k=0

(1 + z2k

) =
1

1 − z
.

10. Find the Hadamard products for:

(a) ez − 1;

(b) cos πz.

[Hint: The answers are ez/2z
∏∞

n=1(1 + z2/4n2π2) and
∏∞

n=0(1 − 4z2/(2n + 1)2),
respectively.]

11. Show that if f is an entire function of finite order that omits two values, then
f is constant. This result remains true for any entire function and is known as
Picard’s little theorem.

[Hint: If f misses a, then f(z) − a is of the form ep(z) where p is a polynomial.]

12. Suppose f is entire and never vanishes, and that none of the higher derivatives
of f ever vanish. Prove that if f is also of finite order, then f(z) = eaz+b for some
constants a and b.

13. Show that the equation ez − z = 0 has infinitely many solutions in C.

[Hint: Apply Hadamard’s theorem.]

14. Deduce from Hadamard’s theorem that if F is entire and of growth order ρ
that is non-integral, then F has infinitely many zeros.

15. Prove that every meromorphic function in C is the quotient of two entire
functions. Also, if {an} and {bn} are two disjoint sequences having no finite limit
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points, then there exists a meromorphic function in the whole complex plane that
vanishes exactly at {an} and has poles exactly at {bn}.

16. Suppose that

Qn(z) =
Nn∑

k=1

cn
k zk

are given polynomials for n = 1, 2, . . .. Suppose also that we are given a sequence of
complex numbers {an} without limit points. Prove that there exists a meromorphic
function f(z) whose only poles are at {an}, and so that for each n, the difference

f(z) − Qn

(
1

z − an

)

is holomorphic near an. In other words, f has a prescribed poles and principal
parts at each of these poles. This result is due to Mittag-Leffler.

17. Given two countably infinite sequences of complex numbers {ak}∞k=0 and
{bk}∞k=0, with limk→∞ |ak| = ∞, it is always possible to find an entire function F
that satisfies F (ak) = bk for all k.

(a) Given n distinct complex numbers a1, . . . , an, and another n complex num-
bers b1, . . . , bn, construct a polynomial P of degree ≤ n − 1 with

P (ai) = bi for i = 1, . . . , n.

(b) Let {ak}∞k=0 be a sequence of distinct complex numbers such that a0 = 0
and limk→∞ |ak| = ∞, and let E(z) denote a Weierstrass product associated
with {ak}. Given complex numbers {bk}∞k=0, show that there exist integers
mk ≥ 1 such that the series

F (z) =
b0

E′(z)

E(z)

z
+

∞∑

k=1

bk

E′(ak)

E(z)

z − ak

(
z
ak

)mk

defines an entire function that satisfies

F (ak) = bk for all k ≥ 0.

This is known as the Pringsheim interpolation formula.

7 Problems

1. Prove that if f is holomorphic in the unit disc, bounded and not identically
zero, and z1, z2, . . . , zn, . . . are its zeros (|zk| < 1), then

∑

n

(1 − |zn|) < ∞.


