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Now we recall the simple fact that whenever n # 0, the integral of e~
over any circle centered at the origin vanishes. Therefore
1 2

ap = — [u(re®) — Cr¥le™™%d9  when n > 0,
" Jq

hence

27
[an] < % / [Cr® — u(re®)] df < 20757 — 2Re(ag)r ™.
0

7«’!7,

Letting r tend to infinity along the sequence given in the hypothesis of
the lemma proves that a,, = 0 for n > s. This completes the proof of the
lemma and of Hadamard’s theorem.

6 Exercises

1. Give another proof of Jensen’s formula in the unit disc using the functions
(called Blaschke factors)

Ya(z)

1 ar

[Hint: The function f/(1)z, - - 1.5 ) is nowhere vanishing.]

2. Find the order of growth of the following entire functions:
(a) p(z) where p is a polynomial.

(b) €**" for b # 0.

z

(c) e .

3. Show that if 7 is fixed with Im(7) > 0, then the Jacobi theta function

¢S]

@(Z|’T): Z ewin27'627rinz

is of order 2 as a function of z. Further properties of ® will be studied in Chap-
ter 10.

[Hint: —n?t + 2n|z| < —n?t/2 when ¢ > 0 and n > 4|z|/t.]

4. Let t > 0 be given and fixed, and define F'(z) by

F(Z) _ H(]- _ 6727rnt627riZ).
n=1

Note that the product defines an entire function of z.
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(a) Show that |F(z)] < Ae“‘z‘27 hence F is of order 2.

(b) F vanishes exactly when z = —int + m for n > 1 and n, m integers. Thus,
if z,, is an enumeration of these zeros we have

1 1

[Hint: To prove (a), write F'(z) = F1(z)F2(z) where

N oo
3 (z) = H(]- _ 6727rnte27riZ) and FQ(Z) _ H (1 _ 6727rnt627riZ).
n=1 n=N+1

Choose N = ¢|z| with ¢ appropriately large. Then, since
(Z 627rnt> 62W\z\ < 1’
N+1

one has |F2(z)| < A. However,
|1 _ e—27rnt627ri2| < 1+ 627r\z\ < 262#\2\.

Thus |Fy(z)] < 2Ve2™VI=l < ¢“'1?1* . Note that a simple variant of the function F
arises as a factor in the triple product formula for the Jacobi theta function ©,
taken up in Chapter 10.]

5. Show that if a > 1, then
FQ(Z) :/ ef\t‘ae%rizt dt
is an entire function of growth order a/(ax — 1).

[Hint: Show that

t|” _
—% + 27|2||t] < ¢fz|*/ @7V

by considering the two cases |t|*~" < A|z| and [t|*™' > Alz|, for an appropriate
constant A.]

6. Prove Wallis’s product formula

[\]
[N}
>
>

2m - 2m

3.5 (2m—1)-(2m+1)

T
2 1

w

[Hint: Use the product formula for sinz at z = 7/2.]

7. Establish the following properties of infinite products.
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(a) Show that if 3 |as|? converges, then the product [](1 + an) converges to a
non-zero limit if and only if )" a, converges.

(b) Find an example of a sequence of complex numbers {a,} such that )  an
converges but [[(1 + an) diverges.

(c) Also find an example such that [[(1 4 an) converges and ) an diverges.
8. Prove that for every z the product below converges, and
cos(z/2) cos(z/4) cos(z/8) - H cos(z/2") = sin 2

[Hint: Use the fact that sin 2z = 2sin z cos z.]

9. Prove that if |z] < 1, then

A+2)(1+2)1 420 +2%) - = H(1+z2k) -

10. Find the Hadamard products for:
(a) e —1;
(b) cosmz.

[Hint: The answers are e*/?2[[°°, (1 + 2%/4n*7?) and [[2° (1 — 422 /(2n + 1)?),
respectively.]

11. Show that if f is an entire function of finite order that omits two values, then
f is constant. This result remains true for any entire function and is known as
Picard’s little theorem.

[Hint: If f misses a, then f(z) — a is of the form e?*) where p is a polynomial.]

12. Suppose f is entire and never vanishes, and that none of the higher derivatives
of f ever vanish. Prove that if f is also of finite order, then f(z) = e®**® for some
constants a and b.

13. Show that the equation e* — z = 0 has infinitely many solutions in C.

[Hint: Apply Hadamard’s theorem.]

14. Deduce from Hadamard’s theorem that if F' is entire and of growth order p
that is non-integral, then F' has infinitely many zeros.

15. Prove that every meromorphic function in C is the quotient of two entire
functions. Also, if {a»} and {b,} are two disjoint sequences having no finite limit
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points, then there exists a meromorphic function in the whole complex plane that
vanishes exactly at {a»} and has poles exactly at {b,}.

16. Suppose that

Np,
k
Qu() =Y ek -
k=1
are given polynomials for n = 1,2, .... Suppose also that we are given a sequence of

complex numbers {a, } without limit points. Prove that there exists a meromorphic
function f(z) whose only poles are at {a»}, and so that for each n, the difference

10 - (=)

is holomorphic near a,. In other words, f has a prescribed poles and principal
parts at each of these poles. This result is due to Mittag-Leffler.

17. Given two countably infinite sequences of complex numbers {ar};2, and
{br}720, with limy_.o |ar| = 00, it is always possible to find an entire function F'
that satisfies F'(ay) = by for all k.

(a) Given n distinct complex numbers ai, .. ., an, and another n complex num-
bers b1, ..., b,, construct a polynomial P of degree < n — 1 with

P(ai):bi forizl,...,n.

(b) Let {ar}72y be a sequence of distinct complex numbers such that ag =0
and limy .o |ax| = 00, and let E(z) denote a Weierstrass product associated
with {ax}. Given complex numbers {bx}5—, show that there exist integers
my > 1 such that the series

o e 4 (2)

zZ—a a
1 k k

defines an entire function that satisfies
F(ar) = by for all k > 0.

This is known as the Pringsheim interpolation formula.

7 Problems

1. Prove that if f is holomorphic in the unit disc, bounded and not identically
zero, and 21, 22, ..., Zn, ... are its zeros (|zx| < 1), then

Z(l — |zn]) < oo.

n



