# MATH 214 Homework 1 

Yulong Dong

January 31, 2020

## 1 Problem 1-4

(a)

Because $\mathcal{U}=\left\{U_{\alpha}\right\}$ is an open cover of the topological manifold $M$, for each point $p \in M$, there exists an open set $U_{\alpha} \in \mathcal{U}$ such that $p \in U_{\alpha}$. Because $U_{\alpha}$ intersects only finitely many other sets in the coveer, it is evident that $\mathcal{U}$ is locally finite by definition.

## (b)

Let $M=(0,2) \times \mathbb{R}$ and $\mathcal{U}=\{(1-\epsilon, 2) \times \mathbb{R}\} \cup\{(0,1) \times(n-\epsilon, n+1+\epsilon): n \in \mathbb{Z}\}$ for some $\epsilon \in(0,1)$. It is obvious that each point on $M$ has a neighborhood, which can be chosen to be small enough, that intersects only finitely many sets in the cover. However, $(1-\epsilon, 2) \times \mathbb{R}$ intersects all other sets.

## (c)

Because $\mathcal{U}$ is locally finite, for each point $p \in M$, there exists an open neighborhood $V_{p}$ which intersects finitely many sets in the cover $\mathcal{U}$. Those sets $V_{p}$ 's form another cover on $M$. By the precompactness of $U_{\alpha} \in \mathcal{U}, \bar{U}_{\alpha}$ can be covered by finitely many $V_{p}$ 's, say, $U_{\alpha} \subset \bar{U}_{\alpha} \subset \bigcup_{i=1}^{n} V_{p_{i}}$. Because each $V_{p_{i}}$ intersects only finitely many $U_{\beta}$ 's, it means $U_{\alpha}$ only intersects finitely many other sets in the cover $\mathcal{U}$.

## 2 Problem 1-6

First consider the map $F_{s}(x)=|x|^{s-1} x$ for all $s>0 . \forall x \in \mathbb{B}^{n}:=\left\{x \in \mathbb{R}^{n}:|x| \leq 1\right\},\left|F_{s}(x)\right|=$ $|x|^{s} \leq 1$, then $F_{s}: \mathbb{B}^{n} \rightarrow \mathbb{B}^{n}$. Because $x, F_{s}(x)$ only differ by a scaling factor $|x|^{s-1} \in(0,1]$, it is evident that $F_{s}$ is injective and continuous. Let $y=F_{s}(x)=|x|^{s-1} x$, then $|y|=|x|^{s}$ which leads to the inverse map $F_{s}^{-1}: \mathbb{B}^{n} \rightarrow \mathbb{B}^{n}, x \mapsto|x|^{(1-s) / s} x$. The inverse map is also continuous. Thus, $F_{s}$ is a homeomorphism. Furthermore, only when $s=1, F_{s}, F_{s}^{-1}=\mathrm{id}_{\mathbb{B}^{n}}$ are smooth and then diffeomorphism, otherwise the negative power will apear up to some order of derivative which breaks the smoothness.

Suppose $\mathcal{A}:=\left\{U_{\alpha}, \phi_{\alpha}\right\}$ is a smooth structure on $M$. Let's consider the composite coordinate chart
$\mathcal{A}_{s}:=\left\{U_{\alpha}, \phi_{\alpha}^{(s)}\right\}$ where $\phi_{\alpha}^{(s)}: U_{\alpha} \rightarrow \mathbb{B}^{n}, p \mapsto F_{s} \circ \phi_{\alpha}(p)$. Because $F_{s}$ is a homeomorphism, the composite map $\phi_{\alpha}^{(s)}$ is again a homeomorphism. It is evident that $\mathcal{A}=\mathcal{A}_{1}$ because $F_{1}=$ id. Then, it needs to show that $\mathcal{A}$ and $\mathcal{A}_{s}$ are not equivalent when $s \neq 1$. Consider the composite map $\phi_{\alpha}^{(s)} \circ \phi_{\beta}^{-1}: \phi_{\beta}\left(U_{\alpha} \cap U_{\beta}\right) \rightarrow \phi_{\alpha}^{(s)}\left(U_{\alpha} \cap U_{\beta}\right), x \mapsto F_{s}\left(\phi_{\alpha}\left(\phi_{\beta}^{-1}(x)\right)\right)$. Because $F_{s}$ is not smooth for $s \neq 1$, it means $\phi_{\alpha}^{(s)}$ and $\phi_{\beta}$ is not compatible. Then, the union of $\mathcal{A}, \mathcal{A}_{s}$ is not again an atlas. Thus, $\mathcal{A}$ and $\mathcal{A}_{s}$ are not equivalent. Since the positive real number is uncountable, we are able to construct uncountably many distinct smooth structures from the given one.

## 3 Problem 2-1

Consider the composite map $F:=\psi \circ f \circ \phi^{-1}: \phi\left(U \cap f^{-1}(V)\right) \rightarrow \psi(V)$. Because the preimage of $f$ is

$$
f^{-1}(V)=\left\{\begin{array}{ll}
\{x \geqslant 0\} & 1 \in V, 0 \notin V  \tag{1}\\
\{x<0\} & 0 \in V, 1 \notin V \\
\mathbb{R} & 0,1 \in V \\
\varnothing & 0,1 \notin V
\end{array} \Rightarrow U \cap f^{-1}(V)= \begin{cases}U \cap\{x \geqslant 0\} & 1 \in V, 0 \notin V \\
U \cap\{x<0\} & 0 \in V, 1 \notin V \\
U & 0,1 \in V \\
\varnothing & 0,1 \notin V\end{cases}\right.
$$

If 0,1 are both in or not in $V$, the composite maps in both situations are obviously smooth. In other two situations, the composite map is a constant map sending the point on the domain to either $\psi(0)$ or $\psi(1)$. Then, it can be concluded that the composite map is smooth.

However, because $f: \mathbb{R} \rightarrow \mathbb{R}$ itself is not continuous at $x=0$, the composite map $\psi \circ f \circ \phi^{-1}$ : $\phi(U \cap V) \rightarrow \psi(U \cap V)$ is not smooth. Thus, $f$ is not smooth in the sense of smooth functions on the manifold.

## 4 Problem 2-9

The commutative diagram gives $\widetilde{p} \circ G(z)=\widetilde{p}([z, 1])=G \circ p(z)=[p(z), 1]$. Because of the equivalent relation $[c z, c]=[z, 1], \forall c \in \mathbb{C} \backslash\{0\}$, it means $\widetilde{p}\left(\left[z_{1}, z_{2}\right]\right)=\left[p\left(\frac{z_{1}}{z_{2}}\right), 1\right]$ when $z_{2} \neq 0$. Thus, define the map as

$$
\widetilde{p}\left(\left[z_{1}, z_{2}\right]\right)= \begin{cases}{\left[p\left(\frac{z_{1}}{z_{2}}\right), 1\right]} & , z_{2} \neq 0  \tag{2}\\ {[1,0]} & , \text { otherwise }\end{cases}
$$

Then, we need to verify that $\widetilde{p}: \mathbb{C P} \rightarrow \mathbb{C P}$ defined above is a smooth map. Consider two charts $U_{1}=\left\{\left[z_{1}, z_{2}\right] \in \mathbb{C P}: z_{2} \neq 0\right\}, \phi_{1}\left(\left[z_{1}, z_{2}\right]\right)=\frac{z_{1}}{z_{2}}$ and $U_{2}=\left\{\left[z_{1}, z_{2}\right] \in \mathbb{C P}: z_{1} \neq 0\right\}, \phi_{2}\left(\left[z_{1}, z_{2}\right]\right)=\frac{z_{2}}{z_{1}}$. The composition $\phi_{2} \circ \phi_{1}^{-1}: \mathbb{C} \rightarrow \mathbb{C}, z \mapsto \frac{1}{z}$ is smooth. Thus, those two charts form the smooth structure on $\mathbb{C P}$.

The compositee map $\phi_{1} \circ \widetilde{p} \circ \phi_{1}^{-1}: \mathbb{C} \rightarrow \mathbb{C}, z \mapsto p(z)$ is smooth because $p$ is a polynomial. The composite map $\phi_{1} \circ \widetilde{p} \circ \phi_{2}^{-1}: \mathbb{C} \backslash\{0\} \rightarrow \mathbb{C} \backslash\{0\}, z \mapsto p\left(\frac{1}{z}\right)$ is smooth. The composite map $\phi_{2} \circ \widetilde{p} \circ \phi_{1}^{-1}: \mathbb{C} \backslash\{0\} \rightarrow \mathbb{C} \backslash\{0\}, z \mapsto 1 / p(z)$ is smooth. The composite map

$$
\phi_{2} \circ \widetilde{p} \circ \phi_{2}^{-1}: \mathbb{C} \rightarrow \mathbb{C}, z \mapsto \begin{cases}1 / p\left(\frac{1}{z}\right) & , z \neq 0 \\ 0 & , z=0\end{cases}
$$

is smooth because $1 / p\left(\frac{1}{z}\right)$ can be expressed as a ratio of two polynomials and it is 0 at the origin.
Thus, $\widetilde{p}: \mathbb{C} \rightarrow \mathbb{C}$ is the unique smooth continuation of $p: \mathbb{C} \rightarrow \mathbb{C}$ such that the following diagram commutes.


## 5 Problem 2-14

According to Theorem 2.29, for closed subsets on the manifold $A, B$, we can find smooth nonnegative functions $f_{A}, f_{B}$ such that $f_{A}^{-1}(0)=A, f_{B}^{-1}(0)=B$ respectively. Let $f: M \rightarrow \mathbb{R}, p \mapsto f(p)=$ $\frac{f_{A}(p)}{f_{A}(p)+f_{B}(p)}$. Because $A, B$ are disjoint, $f$ is well defined with non-singular denominator. Since both $f_{A}, f_{B}$ are nonnegative, $0 \leq f(x) \leq 1 . f^{-1}(0)=\left\{p \in M: f_{A}(p)=0\right\}=f_{A}^{-1}(0)=A$, $f^{-1}(1)=\left\{p \in M: f_{B}(p)=0\right\}=f_{B}^{-1}(0)=B$. The smoothness of $f_{A}, f_{B}$ implies that of $f$.

