MATH 214 Homework 1

Yulong Dong

January 31, 2020

1 Problem 1-4

(a)

Because $\mathcal{U} = \{U_{\alpha}\}$ is an open cover of the topological manifold M, for each point $p \in M$, there exists an open set $U_{\alpha} \in \mathcal{U}$ such that $p \in U_{\alpha}$. Because U_{α} intersects only finitely many other sets in the coveer, it is evident that \mathcal{U} is locally finite by definition.

(b)

Let $M = (0, 2) \times \mathbb{R}$ and $\mathcal{U} = \{(1 - \epsilon, 2) \times \mathbb{R}\} \cup \{(0, 1) \times (n - \epsilon, n + 1 + \epsilon) : n \in \mathbb{Z}\}$ for some $\epsilon \in (0, 1)$. It is obvious that each point on M has a neighborhood, which can be chosen to be small enough, that intersects only finitely many sets in the cover. However, $(1 - \epsilon, 2) \times \mathbb{R}$ intersects all other sets.

(c)

Because \mathcal{U} is locally finite, for each point $p \in M$, there exists an open neighborhood V_p which intersects finitely many sets in the cover \mathcal{U} . Those sets V_p 's form another cover on M. By the precompactness of $U_{\alpha} \in \mathcal{U}$, \overline{U}_{α} can be covered by finitely many V_p 's, say, $U_{\alpha} \subset \overline{U}_{\alpha} \subset \bigcup_{i=1}^n V_{p_i}$. Because each V_{p_i} intersects only finitely many U_{β} 's, it means U_{α} only intersects finitely many other sets in the cover \mathcal{U} .

2 Problem 1-6

First consider the map $F_s(x) = |x|^{s-1}x$ for all s > 0. $\forall x \in \mathbb{B}^n := \{x \in \mathbb{R}^n : |x| \leq 1\}, |F_s(x)| = |x|^s \leq 1$, then $F_s : \mathbb{B}^n \to \mathbb{B}^n$. Because $x, F_s(x)$ only differ by a scaling factor $|x|^{s-1} \in (0, 1]$, it is evident that F_s is injective and continuous. Let $y = F_s(x) = |x|^{s-1}x$, then $|y| = |x|^s$ which leads to the inverse map $F_s^{-1} : \mathbb{B}^n \to \mathbb{B}^n, x \mapsto |x|^{(1-s)/s}x$. The inverse map is also continuous. Thus, F_s is a homeomorphism. Furthermore, only when $s = 1, F_s, F_s^{-1} = \mathrm{id}_{\mathbb{B}^n}$ are smooth and then diffeomorphism, otherwise the negative power will apear up to some order of derivative which breaks the smoothness.

Suppose $\mathcal{A} := \{U_{\alpha}, \phi_{\alpha}\}$ is a smooth structure on M. Let's consider the composite coordinate chart

 $\mathcal{A}_s := \{U_\alpha, \phi_\alpha^{(s)}\}\$ where $\phi_\alpha^{(s)}: U_\alpha \to \mathbb{B}^n, \ p \mapsto F_s \circ \phi_\alpha(p)$. Because F_s is a homeomorphism, the composite map $\phi_\alpha^{(s)}$ is again a homeomorphism. It is evident that $\mathcal{A} = \mathcal{A}_1$ because $F_1 = \text{id}$. Then, it needs to show that \mathcal{A} and \mathcal{A}_s are not equivalent when $s \neq 1$. Consider the composite map $\phi_\alpha^{(s)} \circ \phi_\beta^{-1}: \phi_\beta(U_\alpha \cap U_\beta) \to \phi_\alpha^{(s)}(U_\alpha \cap U_\beta), \ x \mapsto F_s(\phi_\alpha(\phi_\beta^{-1}(x)))$. Because F_s is not smooth for $s \neq 1$, it means $\phi_\alpha^{(s)}$ and ϕ_β is not compatible. Then, the union of $\mathcal{A}, \mathcal{A}_s$ is not again an atlas. Thus, \mathcal{A} and \mathcal{A}_s are not equivalent. Since the positive real number is uncountable, we are able to construct uncountably many distinct smooth structures from the given one.

3 Problem 2-1

Consider the composite map $F := \psi \circ f \circ \phi^{-1} : \phi(U \cap f^{-1}(V)) \to \psi(V)$. Because the preimage of f is

$$f^{-1}(V) = \begin{cases} \{x \ge 0\} & 1 \in V, 0 \notin V \\ \{x < 0\} & 0 \in V, 1 \notin V \\ \mathbb{R} & 0, 1 \in V \\ \varnothing & 0, 1 \notin V \end{cases} \Rightarrow U \cap f^{-1}(V) = \begin{cases} U \cap \{x \ge 0\} & 1 \in V, 0 \notin V \\ U \cap \{x < 0\} & 0 \in V, 1 \notin V \\ U & 0, 1 \in V \\ \varnothing & 0, 1 \notin V \end{cases}$$
(1)

If 0, 1 are both in or not in V, the composite maps in both situations are obviously smooth. In other two situations, the composite map is a constant map sending the point on the domain to either $\psi(0)$ or $\psi(1)$. Then, it can be concluded that the composite map is smooth.

However, because $f : \mathbb{R} \to \mathbb{R}$ itself is not continuous at x = 0, the composite map $\psi \circ f \circ \phi^{-1} : \phi(U \cap V) \to \psi(U \cap V)$ is not smooth. Thus, f is not smooth in the sense of smooth functions on the manifold.

4 Problem 2-9

The commutative diagram gives $\tilde{p} \circ G(z) = \tilde{p}([z, 1]) = G \circ p(z) = [p(z), 1]$. Because of the equivalent relation $[cz, c] = [z, 1], \forall c \in \mathbb{C} \setminus \{0\}$, it means $\tilde{p}([z_1, z_2]) = [p(\frac{z_1}{z_2}), 1]$ when $z_2 \neq 0$. Thus, define the map as

$$\widetilde{p}([z_1, z_2]) = \begin{cases} \left[p\left(\frac{z_1}{z_2}\right), 1 \right] &, z_2 \neq 0, \\ [1, 0] &, \text{otherwise.} \end{cases}$$
(2)

Then, we need to verify that $\tilde{p}: \mathbb{CP} \to \mathbb{CP}$ defined above is a smooth map. Consider two charts $U_1 = \{[z_1, z_2] \in \mathbb{CP} : z_2 \neq 0\}, \phi_1([z_1, z_2]) = \frac{z_1}{z_2} \text{ and } U_2 = \{[z_1, z_2] \in \mathbb{CP} : z_1 \neq 0\}, \phi_2([z_1, z_2]) = \frac{z_2}{z_1}.$ The composition $\phi_2 \circ \phi_1^{-1} : \mathbb{C} \to \mathbb{C}, \ z \mapsto \frac{1}{z}$ is smooth. Thus, those two charts form the smooth structure on \mathbb{CP} .

The composite map $\phi_1 \circ \widetilde{p} \circ \phi_1^{-1} : \mathbb{C} \to \mathbb{C}, \ z \mapsto p(z)$ is smooth because p is a polynomial. The composite map $\phi_1 \circ \widetilde{p} \circ \phi_2^{-1} : \mathbb{C} \setminus \{0\} \to \mathbb{C} \setminus \{0\}, \ z \mapsto p(\frac{1}{z})$ is smooth. The composite map $\phi_2 \circ \widetilde{p} \circ \phi_1^{-1} : \mathbb{C} \setminus \{0\} \to \mathbb{C} \setminus \{0\}, \ z \mapsto 1/p(z)$ is smooth. The composite map

$$\phi_2 \circ \widetilde{p} \circ \phi_2^{-1} : \mathbb{C} \to \mathbb{C}, \ z \mapsto \begin{cases} 1/p(\frac{1}{z}) &, z \neq 0\\ 0 &, z = 0 \end{cases}$$

is smooth because $1/p(\frac{1}{z})$ can be expressed as a ratio of two polynomials and it is 0 at the origin.

Thus, $\tilde{p}: \mathbb{C} \to \mathbb{C}$ is the unique smooth continuation of $p: \mathbb{C} \to \mathbb{C}$ such that the following diagram commutes.

5 Problem 2-14

According to Theorem 2.29, for closed subsets on the manifold A, B, we can find smooth nonnegative functions f_A, f_B such that $f_A^{-1}(0) = A, f_B^{-1}(0) = B$ respectively. Let $f: M \to \mathbb{R}, p \mapsto f(p) = \frac{f_A(p)}{f_A(p) + f_B(p)}$. Because A, B are disjoint, f is well defined with non-singular denominator. Since both f_A, f_B are nonnegative, $0 \le f(x) \le 1$. $f^{-1}(0) = \{p \in M : f_A(p) = 0\} = f_A^{-1}(0) = A, f^{-1}(1) = \{p \in M : f_B(p) = 0\} = f_B^{-1}(0) = B$. The smoothness of f_A, f_B implies that of f.