Math 214, Homework 10.

13-16. Suppose f(t) is a smooth positive function on \mathbb{R} such that the improper integral $\int_0^\infty \sqrt{f(t)} dt$ converges. We claim that the sequence $\{n\}_{n \in \mathbb{N}}$ is a Cauchy sequence in \mathbb{R} equipped with the Riemannian metric $f(t)dt^2$.

Indeed, for $n < m \in \mathbb{R}$, the distance from n to m is bounded by the length of the curve $\gamma : [n,m] \to \mathbb{R} : \gamma(t) = t$ which is

$$\int_{n}^{m} |\gamma'(t)|_{f(t)dt^{2}} dt = \int_{n}^{m} \sqrt{f(t)} |\gamma'(t)| dt = \int_{n}^{m} \sqrt{f(t)} dt \leq \int_{n}^{\infty} \sqrt{f(t)} dt \xrightarrow{n \to \infty} 0$$

So as $n, m \to \infty$, we find that $d_{f(t)dt^2}(n, m) \to 0$, and the sequence is Cauchy.

However, it does not converge. This is because, for any $t \in \mathbb{R}$, once n > N > t we have $d(t, n) \ge d(t, N) > 0$. So the sequence cannot cluster at any point in \mathbb{R} .

This shows that $(\mathbb{R}, f(t)dt^2)$ is not complete.

Similarly, if $\int_{-\infty}^{0} \sqrt{f(t)} dt$ converges, then $\{-n\}_{n \in \mathbb{N}}$ is Cauchy but not convergent.

So if (\mathbb{R}, dt^2) is complete, then both $\int_0^\infty \sqrt{f(t)} dt$ and $\int_{-\infty}^0 \sqrt{f(t)} dt$ diverge.

Conversely, suppose both $\int_0^\infty \sqrt{f(t)} dt$ and $\int_{-\infty}^0 \sqrt{f(t)} dt$ diverge. Then if $\{x_n\}$ is a Cauchy sequence, it is bounded for $d_{f(t)dt^2}$. So it is contained in a set [-r, r] (if it weren't, it would have a subsequence tending to $\pm \infty$, and by divergence of the integrals the subsequence's distance from x_1 would be $\left|\int_{x_1}^{x_{n_k}} \sqrt{f(t)} dt\right|$ which is unbounded).

Such sets are compact for the metric topology, because the metric topology is the same as the original manifold topology on \mathbb{R} (by Theorem 13.29). Every compact metric space is complete, so $\{x_n\}$ converges in [-r, r] for the restricted metric.

Then $(\mathbb{R}, f(t)dt^2)$ is complete.

13-19. Define $F : \mathbb{R} \to \mathbb{R}^2$ by $F(t) = ((e^t + 1) \cos t, (e^t + 1) \sin t)$. Then F is injective: if F(s) = F(t), we have |F(s)| = |F(t)| so $e^s + 1 = e^t + 1$ and s = t. Also, F has Jacobian $\begin{pmatrix} e^t \cos t - (e^t + 1) \sin t \\ e^t \sin t + (e^t + 1) \cos t \end{pmatrix}$. The vectors $\begin{pmatrix} \cos t \\ \sin t \end{pmatrix}$ and $\begin{pmatrix} -\sin t \\ \cos t \end{pmatrix}$ are always linearly independent, since the determinant of the matrix containing them is 1. Thus F's Jacobian is nonvanishing and F is an immersion. F has an inverse map from its image, given by $F^{-1}(x, y) = \log(\sqrt{x^2 + y^2} - 1)$. Denote by $\overline{B(0, R)}$ the closed ball about 0 of radius R in \mathbb{R}^2 . Since the image of F is contained in $\mathbb{R}^2 \setminus \overline{B(0, 1)}$, F^{-1} is continuous on its image and F is a homeomorphism onto its image. This shows that F is an embedding. However, F is not proper because $F^{-1}(\overline{B(0, 2)}) = (-\infty, 0]$ which is noncompact. Yet we may compute that the induced metric $F^*(dx^2 + dy^2)$ is

$$d((e^{t}+1)\cos t)^{2} + d((e^{t}+1)\sin t)^{2} = \left[(e^{t}\cos t - (e^{t}+1)\sin t)^{2} + (e^{t}\sin t + (e^{t}+1)\cos t)^{2}\right]dt^{2} = \left[e^{2t}(\cos^{2}t + \sin^{2}t) + (e^{t}+1)^{2}(\cos^{2}t + \sin^{2}t]dt^{2} = \left[2e^{2t} + 2e^{t} + 1\right]dt^{2}$$

Let $f(t) = 2e^{2t} + 2e^t + 1$. Then f is bounded below by 1, so the improper integrals $\int_{-\infty}^{0} \sqrt{f(t)} dt$ and $\int_{0}^{\infty} \sqrt{f(t)} dt$ both diverge. By problem 13-16, this shows that the induced metric on \mathbb{R} is in fact complete. 13-20. $g_1 = F_1^*(dx^2 + dy^2 + dz^2) = du^2 + dv^2 + d(0)^2 = du^2 + dv^2,$

which is the Euclidean metric on \mathbb{R}^2 . Hence (\mathbb{R}^2, g_1) is not bounded, it is complete, and it is flat, as it is exactly \mathbb{R}^2 equipped with the normal Euclidean metric.

$$\begin{split} g_2 &= F_2^*(dx^2 + dy^2 + dz^2) = du^2 + d(e^v)^2 + d(0)^2 = du^2 + e^{2v}dv^2.\\ g_2 \text{ is not bounded because the distance from } (0,0) \text{ to } (0,n) \text{ satisfies the following bound:}\\ \text{If } \gamma: [0,1] \to \mathbb{R}^2, \ \gamma(0) = (0,0), \ \gamma(1) = (0,n), \ \gamma = (\gamma_1,\gamma_2), \text{ then}\\ \int_0^1 |\gamma'(t)|_{g_2} dt = \int_0^1 \sqrt{\gamma_1'(t)^2 + \gamma_2'(t)^2 e^{2\gamma_2(t)}} dt \ge \int_0^1 \gamma_2'(t) e^{\gamma_2(t)} dt = e^n - 1 \end{split}$$

so the distances $d_{q_2}((0,0),(0,n))$ form an unbounded sequence.

Similarly, g_2 is not complete since the sequence $\{(0, -n)\}$ is Cauchy but certainly does not converge in the topology on \mathbb{R}^2 . To see that it is Cauchy, check:

$$d((0, -n), (0, -m)) \le \int_{-n}^{-m} e^t dt = e^{-m} - e^{-n} \xrightarrow{n, m \to \infty} 0$$

Finally, g_2 is flat since the function $H : \mathbb{R} \times \mathbb{R}_+ \to \mathbb{R}^2 : (x, y) \mapsto (x, \log y)$ is locally a diffeomorphism, and $H^*g_2 = dx^2 + e^{2\log y}d(\log y)^2 = dx^2 + y^2\frac{1}{y^2}dy^2 = dx^2 + dy^2$.

$$g_3 = F_3^*(dx^2 + dy^2 + dz^2) = du^2 + dv^2 + d(u^2 + v^2)^2 = (1 + 4u^2)du^2 + (1 + 4v^2)dv^2$$

Note that the distance between two points in this metric is always greater than the distance between those points in the Euclidean metric, since $1+4u^2 \ge 1$ and $1+4v^2 \ge 1$:

$$L_{g_3}(\gamma) = \int_0^1 \sqrt{\gamma_1'(t)^2 (1 + \gamma_1(t)^2) + \gamma_2'(t)^2)(1 + \gamma_2(t)^2)} dt \ge \int_0^1 \sqrt{\gamma_1'(t)^2 + \gamma_2'(t)^2} dt = L_{\overline{g}}(\gamma)$$

So (\mathbb{R}^2, g_3) is unbounded. And by the same reasoning, any Cauchy sequence in (\mathbb{R}^2, g_2) is a Cauchy sequence in $(\mathbb{R}^2, \overline{g})$, hence converges in the metric topology for \overline{g} , which is the standard topology for \mathbb{R}^2 , which is the metric topology for g_3 . So any Cauchy sequence converges and (\mathbb{R}^2, g_3) is complete.

However, (\mathbb{R}^2, g_3) is not flat. Indeed, using polar coordinates on \mathbb{R}^2 we find that $F_3(r, \theta) = (r \cos \theta, r \sin \theta, r^2)$ is an embedding of a surface of revolution in \mathbb{R}^3 generated by the curve $F(r, 0) = (r, 0, r^2)$. This curve is not part of a straight line. Then by Prop 13.19, the induced metric is not flat, so neither is g_3 (of course, pulling back, the function F_3 is an isometry between (\mathbb{R}^2, g_3) and $F(\mathbb{R}^2)$ with the induced metric).

Note that F_4 is the stereographic embedding of \mathbb{R}^2 as $\mathbb{S}^2 \setminus N$ where N = (0, 0, 1).

Then for any two points $p, q \in \mathbb{R}^2$, the distance $d_{g_4}(p,q)$ is bounded by the length of the pullback of the great circle containing $F_4(p)$ and $F_4(q)$, which is of course 2π . So (\mathbb{R}^2, g_4) is bounded.

It is not complete. The sequence $\{(0,n)\}$ does not converge, yet is Cauchy since $F(0,n) = (0, 2n/(n^2 + 1), (n^2 - 1)/(n^2 + 1))$. Such points have great circle distances $1 - \arccos(2n/(n^2 + 1))$ from N, which converge to 0 as $n \to \infty$. So on $\mathbb{S}^2 \setminus N$ with the induced metric, the sequence is Cauchy. Hence (\mathbb{R}^2, g_4) is not complete.

Finally, as before it is not flat because $F_4(\mathbb{R}^2)$ is a surface of revolution and by using polar coordinates on \mathbb{R}^2 we find that F_4 is an isometry between (\mathbb{R}^2, g_4) and the surface of revolution of the curve $\{(2r/(r^2+1), 0, (r^2-1)/(r^2+1)) : r \geq 0\}$ which is a semicircle with the north endpoint missing. By Prop 13.19, this curve is not part of a straight line and hence g_4 is not flat. 4. If $M = \mathbb{R}^2$, L is the trivial line bundle on M, and $\nabla = d + A$ where d is the trivial connection on L and A = xdy - ydx. Let $a = (1,0), b = (-1,0), \text{ and } \gamma_{\pm} : [0,\pi] \to \mathbb{R}^2$ be paths from a to b with $\gamma_{\pm}(t) = (\cos t, \pm \sin t)$.

Since the bundle is trivial, we may compute the parallel transport from a to b using the parallel transport ODE. Firstly, if $e_1 \in \Omega^0(M, L)$ is the constant section $e_1(x, y) = 1$, then $\nabla(e_1) = d(e_1) + Ae_1 = -ydx + xdy$, so $\Gamma_{11}^1(x, y) = -y$ and $\Gamma_{21}^1(x, y) = x$. If $u_0 \in L_a$ and we define $u(t) \in E_{\gamma+(t)}$ by the following ODE:

$$\begin{cases} \frac{du(t)}{dt} + \left[\Gamma_{11}^{1}(\gamma_{+}(t))\dot{\gamma}_{+}^{1}(t) + \Gamma_{21}^{1}(\gamma_{+}(t))\dot{\gamma}_{+}^{2}(t)\right]u(t) = 0\\ u(0) = u_{0} \end{cases}$$

Substituting in, we find: $\frac{du(t)}{dt} + (\sin^2 t + \cos^2 t)u(t) = \frac{du(t)}{dt} + u(t) = 0$ so $u(t) = u_0 e^{-t}$. Then $u(\pi) = u_0 e^{-\pi}$, and we find that P_{γ_+} is the map $v \mapsto e^{-\pi} v$.

Similarly, if $u_0 \in L_a$ and we define $u(t) \in E_{\gamma_{-}(t)}$ by the following ODE:

$$\begin{cases} \frac{du(t)}{dt} + \left[\Gamma_{11}^{1}(\gamma_{-}(t))\dot{\gamma}_{-}^{1}(t) + \Gamma_{21}^{1}(\gamma_{-}(t))\dot{\gamma}_{-}^{2}(t)\right]u(t) = 0\\ u(0) = u_{0} \end{cases}$$

Substituting in, we find: $\frac{du(t)}{dt} + (-\sin^2 t - \cos^2 t)u(t) = \frac{du(t)}{dt} - u(t) = 0$ so $u(t) = u_0 e^t$. Then $u(\pi) = u_0 e^{\pi}$, and we find that P_{γ_-} is the map $v \mapsto e^{\pi} v$. 5. Let $M = \mathbb{R}^2$, E the trivial rank-2 vector bundle on M, and $\nabla = d + A$ where d is the trivial connection and $A \in \Omega^1(M, \operatorname{End}(E))$ is the connection 1-form

$$A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} dx + \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} dy$$

Then the symbols Γ_1 and Γ_2 are $\Gamma_1 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ and $\Gamma_2 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ and by our local coordinate formulas for the curvature 2-form $F = dx^i \wedge dx^j \otimes F_{ij}$ where $F_{ij} = \partial_i \Gamma_j - \partial_j \Gamma_i + \Gamma_i \Gamma_j - \Gamma_j \Gamma_i = [\Gamma_i, \Gamma_j]$ for our constant matrices. Then $F_{11} = F_{22} = 0$, $F_{12} = -F_{21} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} - \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix}$ Thus $F = dx \wedge dy \otimes \begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix}$.

To see this another way, recall that
$$F = dA + A \wedge A$$
.
 $dA = d(dx \otimes \Gamma_1) + d(dy \otimes \Gamma_2) = d(dx) \otimes \Gamma_1 + d(dy) \otimes \Gamma_2 = 0$ since Γ_1, Γ_2 are constant.
So $F = A \wedge A = dx \wedge dy \otimes \Gamma_1 \Gamma_2 + dy \wedge dx \otimes \Gamma_2 \Gamma_1 = dx \wedge dy \otimes [\Gamma_1, \Gamma_2] = dx \wedge dy \otimes \begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix}$.