Math 214, Homework 10.

13-16. Suppose $f(t)$ is a smooth positive function on \mathbb{R} such that the improper integral $\int_{0}^{\infty} \sqrt{f(t)} d t$ converges. We claim that the sequence $\{n\}_{n \in \mathbb{N}}$ is a Cauchy sequence in \mathbb{R} equipped with the Riemannian metric $f(t) d t^{2}$.
Indeed, for $n<m \in \mathbb{R}$, the distance from n to m is bounded by the length of the curve $\gamma:[n, m] \rightarrow \mathbb{R}: \gamma(t)=t$ which is

$$
\int_{n}^{m}\left|\gamma^{\prime}(t)\right|_{f(t) d t^{2}} d t=\int_{n}^{m} \sqrt{f(t)}\left|\gamma^{\prime}(t)\right| d t=\int_{n}^{m} \sqrt{f(t)} d t \leq \int_{n}^{\infty} \sqrt{f(t)} d t \xrightarrow{n \rightarrow \infty} 0
$$

So as $n, m \rightarrow \infty$, we find that $d_{f(t) d t^{2}}(n, m) \rightarrow 0$, and the sequence is Cauchy.
However, it does not converge. This is because, for any $t \in \mathbb{R}$, once $n>N>t$ we have $d(t, n) \geq d(t, N)>0$. So the sequence cannot cluster at any point in \mathbb{R}.
This shows that $\left(\mathbb{R}, f(t) d t^{2}\right)$ is not complete.
Similarly, if $\int_{-\infty}^{0} \sqrt{f(t)} d t$ converges, then $\{-n\}_{n \in \mathbb{N}}$ is Cauchy but not convergent.
So if $\left(\mathbb{R}, d t^{2}\right)$ is complete, then both $\int_{0}^{\infty} \sqrt{f(t)} d t$ and $\int_{-\infty}^{0} \sqrt{f(t)} d t$ diverge.
Conversely, suppose both $\int_{0}^{\infty} \sqrt{f(t)} d t$ and $\int_{-\infty}^{0} \sqrt{f(t)} d t$ diverge. Then if $\left\{x_{n}\right\}$ is a Cauchy sequence, it is bounded for $d_{f(t) d t^{2}}$. So it is contained in a set $[-r, r$] (if it weren't, it would have a subsequence tending to $\pm \infty$, and by divergence of the integrals the subsequence's distance from x_{1} would be $\left|\int_{x_{1}}^{x_{n_{k}}} \sqrt{f(t)} d t\right|$ which is unbounded).
Such sets are compact for the metric topology, because the metric topology is the same as the original manifold topology on \mathbb{R} (by Theorem 13.29). Every compact metric space is complete, so $\left\{x_{n}\right\}$ converges in $[-r, r]$ for the restricted metric.
Then $\left(\mathbb{R}, f(t) d t^{2}\right)$ is complete.

13-19. Define $F: \mathbb{R} \rightarrow \mathbb{R}^{2}$ by $F(t)=\left(\left(e^{t}+1\right) \cos t,\left(e^{t}+1\right) \sin t\right)$.
Then F is injective: if $F(s)=F(t)$, we have $|F(s)|=|F(t)|$ so $e^{s}+1=e^{t}+1$ and $s=t$. Also, F has Jacobian $\binom{e^{t} \cos t-\left(e^{t}+1\right) \sin t}{e^{t} \sin t+\left(e^{t}+1\right) \cos t}$. The vectors $\binom{\cos t}{\sin t}$ and $\binom{-\sin t}{\cos t}$ are always linearly independent, since the determinant of the matrix containing them is 1 . Thus F 's Jacobian is nonvanishing and F is an immersion.
F has an inverse map from its image, given by $F^{-1}(x, y)=\log \left(\sqrt{x^{2}+y^{2}}-1\right)$.
Denote by $\overline{B(0, R)}$ the closed ball about 0 of radius R in \mathbb{R}^{2}.
Since the image of F is contained in $\mathbb{R}^{2} \backslash \overline{B(0,1)}, F^{-1}$ is continuous on its image and F is a homeomorphism onto its image. This shows that F is an embedding.
However, F is not proper because $F^{-1}(\overline{B(0,2)})=(-\infty, 0]$ which is noncompact.
Yet we may compute that the induced metric $F^{*}\left(d x^{2}+d y^{2}\right)$ is

$$
\begin{gathered}
d\left(\left(e^{t}+1\right) \cos t\right)^{2}+d\left(\left(e^{t}+1\right) \sin t\right)^{2}=\left[\left(e^{t} \cos t-\left(e^{t}+1\right) \sin t\right)^{2}+\left(e^{t} \sin t+\left(e^{t}+1\right) \cos t\right)^{2}\right] d t^{2}= \\
\quad=\left[e^{2 t}\left(\cos ^{2} t+\sin ^{2} t\right)+\left(e^{t}+1\right)^{2}\left(\cos ^{2} t+\sin ^{2} t\right] d t^{2}=\left[2 e^{2 t}+2 e^{t}+1\right] d t^{2}\right.
\end{gathered}
$$

Let $f(t)=2 e^{2 t}+2 e^{t}+1$. Then f is bounded below by 1 , so the improper integrals $\int_{-\infty}^{0} \sqrt{f(t)} d t$ and $\int_{0}^{\infty} \sqrt{f(t)} d t$ both diverge.
By problem 13-16, this shows that the induced metric on \mathbb{R} is in fact complete.

13-20. $g_{1}=F_{1}^{*}\left(d x^{2}+d y^{2}+d z^{2}\right)=d u^{2}+d v^{2}+d(0)^{2}=d u^{2}+d v^{2}$,
which is the Euclidean metric on \mathbb{R}^{2}. Hence $\left(\mathbb{R}^{2}, g_{1}\right)$ is not bounded, it is complete, and it is flat, as it is exactly \mathbb{R}^{2} equipped with the normal Euclidean metric.
$g_{2}=F_{2}^{*}\left(d x^{2}+d y^{2}+d z^{2}\right)=d u^{2}+d\left(e^{v}\right)^{2}+d(0)^{2}=d u^{2}+e^{2 v} d v^{2}$.
g_{2} is not bounded because the distance from $(0,0)$ to $(0, n)$ satisfies the following bound:
If $\gamma:[0,1] \rightarrow \mathbb{R}^{2}, \gamma(0)=(0,0), \gamma(1)=(0, n), \gamma=\left(\gamma_{1}, \gamma_{2}\right)$, then

$$
\int_{0}^{1}\left|\gamma^{\prime}(t)\right|_{g_{2}} d t=\int_{0}^{1} \sqrt{\gamma_{1}^{\prime}(t)^{2}+\gamma_{2}^{\prime}(t)^{2} e^{2 \gamma_{2}(t)}} d t \geq \int_{0}^{1} \gamma_{2}^{\prime}(t) e^{\gamma_{2}(t)} d t=e^{n}-1
$$

so the distances $d_{g_{2}}((0,0),(0, n))$ form an unbounded sequence.
Similarly, g_{2} is not complete since the sequence $\{(0,-n)\}$ is Cauchy but certainly does not converge in the topology on \mathbb{R}^{2}. To see that it is Cauchy, check:

$$
d((0,-n),(0,-m)) \leq \int_{-n}^{-m} e^{t} d t=e^{-m}-e^{-n} \xrightarrow{n, m \rightarrow \infty} 0
$$

Finally, g_{2} is flat since the function $H: \mathbb{R} \times \mathbb{R}_{+} \rightarrow \mathbb{R}^{2}:(x, y) \mapsto(x, \log y)$ is locally a diffeomorphism, and $H^{*} g_{2}=d x^{2}+e^{2 \log y} d(\log y)^{2}=d x^{2}+y^{2} \frac{1}{y^{2}} d y^{2}=d x^{2}+d y^{2}$.
$g_{3}=F_{3}^{*}\left(d x^{2}+d y^{2}+d z^{2}\right)=d u^{2}+d v^{2}+d\left(u^{2}+v^{2}\right)^{2}=\left(1+4 u^{2}\right) d u^{2}+\left(1+4 v^{2}\right) d v^{2}$
Note that the distance between two points in this metric is always greater than the distance between those points in the Euclidean metric, since $1+4 u^{2} \geq 1$ and $1+4 v^{2} \geq 1$:
$L_{g_{3}}(\gamma)=\int_{0}^{1} \sqrt{\left.\gamma_{1}^{\prime}(t)^{2}\left(1+\gamma_{1}(t)^{2}\right)+\gamma_{2}^{\prime}(t)^{2}\right)\left(1+\gamma_{2}(t)^{2}\right)} d t \geq \int_{0}^{1} \sqrt{\gamma_{1}^{\prime}(t)^{2}+\gamma_{2}^{\prime}(t)^{2}} d t=L_{\bar{g}}(\gamma)$
So $\left(\mathbb{R}^{2}, g_{3}\right)$ is unbounded. And by the same reasoning, any Cauchy sequence in $\left(\mathbb{R}^{2}, g_{2}\right)$ is a Cauchy sequence in $\left(\mathbb{R}^{2}, \bar{g}\right)$, hence converges in the metric topology for \bar{g}, which is the standard topology for \mathbb{R}^{2}, which is the metric topology for g_{3}.
So any Cauchy sequence converges and $\left(\mathbb{R}^{2}, g_{3}\right)$ is complete.
However, $\left(\mathbb{R}^{2}, g_{3}\right)$ is not flat. Indeed, using polar coordinates on R^{2} we find that $F_{3}(r, \theta)=\left(r \cos \theta, r \sin \theta, r^{2}\right)$ is an embedding of a surface of revolution in \mathbb{R}^{3} generated by the curve $F(r, 0)=\left(r, 0, r^{2}\right)$. This curve is not part of a straight line. Then by Prop 13.19, the induced metric is not flat, so neither is g_{3} (of course, pulling back, the function F_{3} is an isometry between $\left(\mathbb{R}^{2}, g_{3}\right)$ and $F\left(R^{2}\right)$ with the induced metric).

Note that F_{4} is the stereographic embedding of \mathbb{R}^{2} as $\mathbb{S}^{2} \backslash N$ where $N=(0,0,1)$.
Then for any two points $p, q \in \mathbb{R}^{2}$, the distance $d_{g_{4}}(p, q)$ is bounded by the length of the pullback of the great circle containing $F_{4}(p)$ and $F_{4}(q)$, which is of course 2π. So (\mathbb{R}^{2}, g_{4}) is bounded.
It is not complete. The sequence $\{(0, n)\}$ does not converge, yet is Cauchy since $F(0, n)=\left(0,2 n /\left(n^{2}+1\right),\left(n^{2}-1\right) /\left(n^{2}+1\right)\right)$. Such points have great circle distances $1-\arccos \left(2 n /\left(n^{2}+1\right)\right)$ from N, which converge to 0 as $n \rightarrow \infty$. So on $\mathbb{S}^{2} \backslash N$ with the induced metric, the sequence is Cauchy. Hence $\left(\mathbb{R}^{2}, g_{4}\right)$ is not complete.
Finally, as before it is not flat because $F_{4}\left(\mathbb{R}^{2}\right)$ is a surface of revolution and by using polar coordinates on \mathbb{R}^{2} we find that F_{4} is an isometry between $\left(\mathbb{R}^{2}, g_{4}\right)$ and the surface of revolution of the curve $\left\{\left(2 r /\left(r^{2}+1\right), 0,\left(r^{2}-1\right) /\left(r^{2}+1\right)\right): r \geq 0\right\}$ which is a semicircle with the north endpoint missing. By Prop 13.19, this curve is not part of a straight line and hence g_{4} is not flat.
4. If $M=\mathbb{R}^{2}, L$ is the trivial line bundle on M, and $\nabla=d+A$ where d is the trivial connection on L and $A=x d y-y d x$. Let $a=(1,0), b=(-1,0)$, and $\gamma_{ \pm}:[0, \pi] \rightarrow \mathbb{R}^{2}$ be paths from a to b with $\gamma_{ \pm}(t)=(\cos t, \pm \sin t)$.

Since the bundle is trivial, we may compute the parallel transport from a to b using the parallel transport ODE. Firstly, if $e_{1} \in \Omega^{0}(M, L)$ is the constant section $e_{1}(x, y)=1$, then $\nabla\left(e_{1}\right)=d\left(e_{1}\right)+A e_{1}=-y d x+x d y$, so $\Gamma_{11}^{1}(x, y)=-y$ and $\Gamma_{21}^{1}(x, y)=x$.
If $u_{0} \in L_{a}$ and we define $u(t) \in E_{\gamma_{+}(t)}$ by the following ODE:

$$
\left\{\begin{array}{l}
\frac{d u(t)}{d t}+\left[\Gamma_{11}^{1}\left(\gamma_{+}(t)\right) \dot{\gamma}_{+}^{1}(t)+\Gamma_{21}^{1}\left(\gamma_{+}(t)\right) \dot{\gamma}_{+}^{2}(t)\right] u(t)=0 \\
u(0)=u_{0}
\end{array}\right.
$$

Substituting in, we find: $\frac{d u(t)}{d t}+\left(\sin ^{2} t+\cos ^{2} t\right) u(t)=\frac{d u(t)}{d t}+u(t)=0$ so $u(t)=u_{0} e^{-t}$. Then $u(\pi)=u_{0} e^{-\pi}$, and we find that $P_{\gamma_{+}}$is the map $v \mapsto e^{-\pi} v$.

Similarly, if $u_{0} \in L_{a}$ and we define $u(t) \in E_{\gamma_{-}(t)}$ by the following ODE:

$$
\left\{\begin{array}{l}
\frac{d u(t)}{d t}+\left[\Gamma_{11}^{1}\left(\gamma_{-}(t)\right) \dot{\gamma}_{-}^{1}(t)+\Gamma_{21}^{1}\left(\gamma_{-}(t)\right) \dot{\gamma}_{-}^{2}(t)\right] u(t)=0 \\
u(0)=u_{0}
\end{array}\right.
$$

Substituting in, we find: $\frac{d u(t)}{d t}+\left(-\sin ^{2} t-\cos ^{2} t\right) u(t)=\frac{d u(t)}{d t}-u(t)=0$ so $u(t)=u_{0} e^{t}$. Then $u(\pi)=u_{0} e^{\pi}$, and we find that $P_{\gamma_{-}}$is the map $v \mapsto e^{\pi} v$.
5. Let $M=\mathbb{R}^{2}, E$ the trivial rank- 2 vector bundle on M, and $\nabla=d+A$ where d is the trivial connection and $A \in \Omega^{1}(M, \operatorname{End}(E))$ is the connection 1-form

$$
A=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) d x+\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) d y
$$

Then the symbols Γ_{1} and Γ_{2} are $\Gamma_{1}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$ and $\Gamma_{2}=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$ and by our local coordinate formulas for the curvature 2-form $F=d x^{i} \wedge d x^{j} \otimes F_{i j}$ where $F_{i j}=\partial_{i} \Gamma_{j}-\partial_{j} \Gamma_{i}+\Gamma_{i} \Gamma_{j}-\Gamma_{j} \Gamma_{i}=\left[\Gamma_{i}, \Gamma_{j}\right]$ for our constant matrices.
Then $F_{11}=F_{22}=0, F_{12}=-F_{21}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)-\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)=\left(\begin{array}{ll}0 & 2 \\ 2 & 0\end{array}\right)$
Thus $F=d x \wedge d y \otimes\left(\begin{array}{ll}0 & 2 \\ 2 & 0\end{array}\right)$.
To see this another way, recall that $F=d A+A \wedge A$.
$d A=d\left(d x \otimes \Gamma_{1}\right)+d\left(d y \otimes \Gamma_{2}\right)=d(d x) \otimes \Gamma_{1}+d(d y) \otimes \Gamma_{2}=0$ since Γ_{1}, Γ_{2} are constant.
So $F=A \wedge A=d x \wedge d y \otimes \Gamma_{1} \Gamma_{2}+d y \wedge d x \otimes \Gamma_{2} \Gamma_{1}=d x \wedge d y \otimes\left[\Gamma_{1}, \Gamma_{2}\right]=d x \wedge d y \otimes\left(\begin{array}{ll}0 & 2 \\ 2 & 0\end{array}\right)$.

