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Math 214, Homework 10.

13-16. Suppose f(t) is a smooth positive function on R such that the improper integral∫∞
0

√
f(t)dt converges. We claim that the sequence {n}n∈IN is a Cauchy sequence in R

equipped with the Riemannian metric f(t)dt2.

Indeed, for n < m ∈ R, the distance from n to m is bounded by the length of the curve
γ : [n,m]→ R : γ(t) = t which is∫ m

n

|γ′(t)|f(t)dt2dt =

∫ m

n

√
f(t)|γ′(t)|dt =

∫ m

n

√
f(t)dt ≤

∫ ∞
n

√
f(t)dt

n→∞−−−→ 0

So as n,m→∞, we find that df(t)dt2(n,m)→ 0, and the sequence is Cauchy.

However, it does not converge. This is because, for any t ∈ R, once n > N > t we have
d(t, n) ≥ d(t, N) > 0. So the sequence cannot cluster at any point in R.

This shows that (R, f(t)dt2) is not complete.

Similarly, if
∫ 0

−∞

√
f(t)dt converges, then {−n}n∈IN is Cauchy but not convergent.

So if (R, dt2) is complete, then both
∫∞
0

√
f(t)dt and

∫ 0

−∞

√
f(t)dt diverge.

Conversely, suppose both
∫∞
0

√
f(t)dt and

∫ 0

−∞

√
f(t)dt diverge. Then if {xn} is a

Cauchy sequence, it is bounded for df(t)dt2 . So it is contained in a set [−r, r] (if it
weren’t, it would have a subsequence tending to ±∞, and by divergence of the integrals

the subsequence’s distance from x1 would be
∣∣∣∫ xnk

x1

√
f(t)dt

∣∣∣ which is unbounded).

Such sets are compact for the metric topology, because the metric topology is the same
as the original manifold topology on R (by Theorem 13.29). Every compact metric
space is complete, so {xn} converges in [−r, r] for the restricted metric.

Then (R, f(t)dt2) is complete.



13-19. Define F : R→ R2 by F (t) = ((et + 1) cos t, (et + 1) sin t).

Then F is injective: if F (s) = F (t), we have |F (s)| = |F (t)| so es+1 = et+1 and s = t.

Also, F has Jacobian

(
et cos t− (et + 1) sin t
et sin t+ (et + 1) cos t

)
. The vectors

(
cos t
sin t

)
and

(
− sin t
cos t

)
are

always linearly independent, since the determinant of the matrix containing them is 1.
Thus F ’s Jacobian is nonvanishing and F is an immersion.

F has an inverse map from its image, given by F−1(x, y) = log(
√
x2 + y2 − 1).

Denote by B(0, R) the closed ball about 0 of radius R in R2.

Since the image of F is contained in R2 \ B(0, 1), F−1 is continuous on its image and
F is a homeomorphism onto its image. This shows that F is an embedding.

However, F is not proper because F−1(B(0, 2)) = (−∞, 0] which is noncompact.

Yet we may compute that the induced metric F ∗(dx2 + dy2) is

d((et+1) cos t)2+d((et+1) sin t)2 =
[
(et cos t− (et + 1) sin t)2 + (et sin t+ (et + 1) cos t)2

]
dt2 =

=
[
e2t(cos2 t+ sin2 t) + (et + 1)2(cos2 t+ sin2 t

]
dt2 =

[
2e2t + 2et + 1

]
dt2

Let f(t) = 2e2t + 2et + 1. Then f is bounded below by 1,

so the improper integrals
∫ 0

−∞

√
f(t)dt and

∫∞
0

√
f(t)dt both diverge.

By problem 13-16, this shows that the induced metric on R is in fact complete.



13-20. g1 = F ∗1 (dx2 + dy2 + dz2) = du2 + dv2 + d(0)2 = du2 + dv2,

which is the Euclidean metric on R2. Hence (R2, g1) is not bounded, it is complete, and
it is flat, as it is exactly R2 equipped with the normal Euclidean metric.

g2 = F ∗2 (dx2 + dy2 + dz2) = du2 + d(ev)2 + d(0)2 = du2 + e2vdv2.

g2 is not bounded because the distance from (0, 0) to (0, n) satisfies the following bound:

If γ : [0, 1]→ R2, γ(0) = (0, 0), γ(1) = (0, n), γ = (γ1, γ2), then∫ 1

0

|γ′(t)|g2dt =

∫ 1

0

√
γ′1(t)

2 + γ′2(t)
2e2γ2(t)dt ≥

∫ 1

0

γ′2(t)e
γ2(t)dt = en − 1

so the distances dg2((0, 0), (0, n)) form an unbounded sequence.

Similarly, g2 is not complete since the sequence {(0,−n)} is Cauchy but certainly does
not converge in the topology on R2. To see that it is Cauchy, check:

d((0,−n), (0,−m)) ≤
∫ −m
−n

etdt = e−m − e−n n,m→∞−−−−→ 0

Finally, g2 is flat since the function H : R × R+ → R2 : (x, y) 7→ (x, log y) is locally a
diffeomorphism, and H∗g2 = dx2 + e2 log yd(log y)2 = dx2 + y2 1

y2
dy2 = dx2 + dy2.

g3 = F ∗3 (dx2 + dy2 + dz2) = du2 + dv2 + d(u2 + v2)2 = (1 + 4u2)du2 + (1 + 4v2)dv2

Note that the distance between two points in this metric is always greater than the
distance between those points in the Euclidean metric, since 1+4u2 ≥ 1 and 1+4v2 ≥ 1:

Lg3(γ) =

∫ 1

0

√
γ′1(t)

2(1 + γ1(t)2) + γ′2(t)
2)(1 + γ2(t)2)dt ≥

∫ 1

0

√
γ′1(t)

2 + γ′2(t)
2dt = Lg(γ)

So (R2, g3) is unbounded. And by the same reasoning, any Cauchy sequence in (R2, g2)
is a Cauchy sequence in (R2, g), hence converges in the metric topology for g, which is
the standard topology for R2, which is the metric topology for g3.
So any Cauchy sequence converges and (R2, g3) is complete.

However, (R2, g3) is not flat. Indeed, using polar coordinates on R2 we find that
F3(r, θ) = (r cos θ, r sin θ, r2) is an embedding of a surface of revolution in R3 gener-
ated by the curve F (r, 0) = (r, 0, r2). This curve is not part of a straight line. Then by
Prop 13.19, the induced metric is not flat, so neither is g3 (of course, pulling back, the
function F3 is an isometry between (R2, g3) and F (R2) with the induced metric).



Note that F4 is the stereographic embedding of R2 as S2 \N where N = (0, 0, 1).

Then for any two points p, q ∈ R2, the distance dg4(p, q) is bounded by the length of
the pullback of the great circle containing F4(p) and F4(q), which is of course 2π.
So (R2, g4) is bounded.

It is not complete. The sequence {(0, n)} does not converge, yet is Cauchy since
F (0, n) = (0, 2n/(n2 + 1), (n2 − 1)/(n2 + 1)). Such points have great circle distances
1− arccos(2n/(n2 + 1)) from N , which converge to 0 as n→∞. So on S2 \N with the
induced metric, the sequence is Cauchy. Hence (R2, g4) is not complete.

Finally, as before it is not flat because F4(R2) is a surface of revolution and by using
polar coordinates on R2 we find that F4 is an isometry between (R2, g4) and the surface
of revolution of the curve {(2r/(r2+1), 0, (r2−1)/(r2+1)) : r ≥ 0} which is a semicircle
with the north endpoint missing. By Prop 13.19, this curve is not part of a straight line
and hence g4 is not flat.



4. If M = R2, L is the trivial line bundle on M , and ∇ = d + A where d is the trivial
connection on L and A = xdy − ydx. Let a = (1, 0), b = (−1, 0), and γ± : [0, π] → R2

be paths from a to b with γ±(t) = (cos t,± sin t).

Since the bundle is trivial, we may compute the parallel transport from a to b using the
parallel transport ODE. Firstly, if e1 ∈ Ω0(M,L) is the constant section e1(x, y) = 1,
then ∇(e1) = d(e1) + Ae1 = −ydx+ xdy, so Γ1

11(x, y) = −y and Γ1
21(x, y) = x.

If u0 ∈ La and we define u(t) ∈ Eγ+(t) by the following ODE:
du(t)

dt
+
[
Γ1
11(γ+(t))γ̇1+(t) + Γ1

21(γ+(t))γ̇2+(t)
]
u(t) = 0

u(0) = u0

Substituting in, we find:
du(t)

dt
+(sin2 t+cos2 t)u(t) =

du(t)

dt
+u(t) = 0 so u(t) = u0e

−t.

Then u(π) = u0e
−π, and we find that Pγ+ is the map v 7→ e−πv.

Similarly, if u0 ∈ La and we define u(t) ∈ Eγ−(t) by the following ODE:
du(t)

dt
+
[
Γ1
11(γ−(t))γ̇1−(t) + Γ1

21(γ−(t))γ̇2−(t)
]
u(t) = 0

u(0) = u0

Substituting in, we find:
du(t)

dt
+(− sin2 t−cos2 t)u(t) =

du(t)

dt
−u(t) = 0 so u(t) = u0e

t.

Then u(π) = u0e
π, and we find that Pγ− is the map v 7→ eπv.



5. Let M = R2, E the trivial rank-2 vector bundle on M , and ∇ = d + A where d is the
trivial connection and A ∈ Ω1(M,End(E)) is the connection 1-form

A =

(
1 0
0 −1

)
dx+

(
0 1
−1 0

)
dy

Then the symbols Γ1 and Γ2 are Γ1 =

(
1 0
0 −1

)
and Γ2 =

(
0 1
−1 0

)
and by our local coordinate formulas for the curvature 2-form F = dxi ∧ dxj ⊗ Fij
where Fij = ∂iΓj − ∂jΓi + ΓiΓj − ΓjΓi = [Γi,Γj] for our constant matrices.

Then F11 = F22 = 0, F12 = −F21 =

(
1 0
0 −1

)(
0 1
−1 0

)
−
(

0 1
−1 0

)(
1 0
0 −1

)
=

(
0 2
2 0

)
Thus F = dx ∧ dy ⊗

(
0 2
2 0

)
.

To see this another way, recall that F = dA+ A ∧ A.

dA = d(dx⊗ Γ1) + d(dy ⊗ Γ2) = d(dx)⊗ Γ1 + d(dy)⊗ Γ2 = 0 since Γ1,Γ2 are constant.

So F = A∧A = dx∧dy⊗Γ1Γ2+dy∧dx⊗Γ2Γ1 = dx∧dy⊗ [Γ1,Γ2] = dx∧dy⊗
(

0 2
2 0

)
.


