Name: Mason Haberle SID: 3032732029 Date: 4/13/20

Math 214, Homework 11.

1. Let M = S? embedded in R? with spherical coordinates (0, ¢) — (sin 6 cos ¢, sin @ sin @, cos )

so that the induced metric is given by:

dz® + dy* + dz* = d(sinf cos @)? + d(sin 0 sin p)* + d(cos 6)*
= (cos® cospdf — sin O sin pdp)? + (cos O sin pdf + sin O cos pdp)? + sin® OdH>
d6? + sin®  dy?
Then we need to compute the Levi-Cevita connection for this metric. The symbols are

Fil = 911( Opgr1 + Opg11 + Ogg11)/2 =0
I, = g*2(=0,911 + Osg12 + 0pg12)/2 = 0
Ty =T3 = ¢ (=012 + Bogar + Opgn1)/2 =0
F%2 = F%l = 922( Opgr2 + Opg22 + 0,912) /2 = cot §
[ = g (=922 + 0pg12 + Opgo1) /2 = —sinf cos b
[ = g%(—0p922 + 9pgo2 + 0,p922)/2 = 0

Now, let 6y € (0,7), 7 : [0,1] — S? be the curve (t) = (6o, 27t), and ug = 9, € T} 0)S>.
The parallel transport of ug by « is given by the ODEs

G+ T (v(0)37 (1) u* (1)
d“ + F (Y(0)37 ()" (1)
u (0) =0, u?(0)=1
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Since 4 (t) = 0 and 42(t) = 27 for all ¢, this becomes the system

dd—i — (27 sin B cos Op)u(t) = 0
du” 4 (27 cot fo)ul (1) = 0
u'(0) =0, u*0)=1

Then L4 + (472 cos? f)u' (t) = 0 and u' (t) = C'sin((27 cos fp)t).
Then u?(t) = C(cscby) cos((2m cosby)t), C' = sin by, and we find:
(

u(t) =

We find that the desired parallel transport of ug is

(sin ) sin((27 cos Oy)t), cos(2m cos Oy)t))

u(1) = sin(fy) sin(27 cos 09)dy + cos(2m cos 090, € T1)S* = Ty()S*



2. For § > 0, let M be the submanifold given by the embedding (0,2n] x (—6,d) — R3,
mapping (¢, z) — ((1 + zsin(p/2)) cos ¢, ((1 + zsin(p/2)) sin p, z cos(p/2)).
Then the induced metric from R? is given by:

Z(dmi)z = d((1+ zsin(p/2)) cos p)? + d(((1 + zsin(p/2)) sin ¢)? + d(z cos(¢/2))?
= (sin(p/2) cos pdz + (/2 cos(¢/2) cosp — (1 + zsin(p/2)) sin ) dy)?
+ (sin(p/2) sin o dz + (/2 cos(¢/2) sin g + (1 + zsin(p/2)) cos @) dyp)?
+ (cos(/2) dz — z/2sin(p/2) dp)?
= d2? + (2*/4 + (1 + zsin(p/2))?)dp?

Note that since g., = 1, g., = 0, we immediately have I;, =17, =17, =T%, =0.
ooz’

~9.1%, + 1%, T%

ppT 2p

Then we can compute the Riemann curvature tensor component R
R, = (9@‘20 - @f;@ + e e +r:e e —r21r: —Irzr

Pz olie Tl 2 = 120, = 15,10, =
We compute the Christoffel symbols:

I2, = %gzz(—ﬁzgw) = —%02(22/4+(1+z sin(¢/2))?) = —z/4—(1+zsin(p/2)) sin(p/2).
o _ 1 o _ z/4+ (1 + zsin(p/2)) sin(p/2)

[%, = 2977(0:9¢¢) 22/4 + (1 + zsin(p/2))?

Then we find that

R, = 1/4+sin’(p/2) —

Pz

(2/4 + (1 + zsin(p/2)) sin(p/2))?
22/4 4 (1 + zsin(p/2))?

which, when z = ¢ =0, is 1/4.

Hence the curvature does not vanish everywhere and the metric is not flat.



3. We proceed similarly as in the last problem.
For § > 0, let M be the submanifold given by the embedding R x (—d,d) — R3,
mapping (t, z) — (z cos(sint), zsin(sint), t).
Then the induced metric from R3 is given by:
Y (da')* = d(zcos(sint))® + d(zsin(sint))? + dt*

= (cos(sint)dz — zsin(sint) cost dt)* + (sin(sint) dz + z cos(sint) cos t dt)* + dt>
= d2* + (1 + 2% cos®t) dt?

Note that since g., = 1, g.; = 0, we immediately have ', =T, =T7, =T, = 0.
Then we can compute the Riemann curvature tensor component I?},,:
Rpy, = 0% — 0.1, + T4 1%, + DRI, — T I — T, = —0.1% + TH1Y,
We compute the Christoffel symbols:
Iz = %gzz(—ﬁzgtt) = —zcos’t
z cos® t

Tt = 148, gy) =
2 = 39" (0:9u) 14 22cos?t

Then we find that

Z2cos't  cos’t
14 22cos2t 1+ 22cos?t
which, when z =¢ =0, is 1.

R, = cos®t —

Hence the curvature does not vanish everywhere, and the metric is not flat.



4. Let G be a Lie group, X,Y € T.G. Consider the curve (t) = exp(tY),
which is both the geodesic through e in direction Y and the integral curve through e of
the left-invariant vector field generated by Y (Nic 4.1.15).

Recall the parallel transport equation, Vs yu(t) = 0.

Let u(t) = (Lv(t/2))*<Rw(t/2)>*X‘
We have that () is the restriction of the left-invariant v.f. Z generated by Y to 7.
Let X; be a global left-invariant frame for TG, and write u(t) = U*(t)X;|)

Then Vs (ult) = 3, LU0 Xl + 5, UH(0)(V2 X0 .

We have VX, = %[Z , X;], by our formula for the Levi-Cevita connection on G.

We also have the following infinitessimal change of u in terms of the Ad representation:
u(t +¢) = (La(rer/2)« (By(re)/2)« X = (Bye/2) o (Liy(e/2))ult) =
= (Ry(e/2)+ (Ly(=e/2)) s (L) )tult) = Ady—ep) (Loye))<ult))
(where we have exploited the fact that L, and R, commute).
So, noting that the X; are invariant with change of time, we can write

ZdtU’ Xl = lim Z(u(t +€) — (Lo )ou(t) =

e—0 ¢

e—0

~lig | 2(Ad o~ D) (Byo)eul®) = ad_yyult) = |5 Z0u)]| =~ 50012, X))

where we’ve taken that the differential of Ad, is ad (which is acting on wu(t), ¢ constant,
as though it’s part of a left-invariant vector field: it’s acting on U*(¢)X; with ¢ fixed).

(If it’s not kosher to assume this, here’s a short proof: Since R, and L; commute, the
flow of a left invariant vector field commutes with Ry, i.e. ¢i(g) = Ry, ()9, and we can
go by the Lie derivative:

[~1/2Z,u(0)] = Vs azu(t) = lim *(exp(~¢/22).u(t) — u(t)) =

—0 &
1 1
= lli% g((ReXP(fsﬂZ))*u(t) - U(t)) = lg% g((ReXp(f€/2Z))*(LGXP(76/2Z))*U(t) - U(t))

which is where we started... Oh dear, this is a mess).

So we find that the parallel transport equation is satisfied:

Viou(t) = 3 (VT2 X0b + GU0OXiho ) = 50 012X 300 (2.X] =0
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Since solutions to ODE are unique, u(t) is indeed the parallel transport of X along ~(t).



5. First of all, SU(2) = {A e M(2,C): A*A=1,det A

=1},

so su(2) = T7(SU(2)) = ker dF Nker dGy where F : GL(2,C) — GL(2,C),

F(A) = A*A, and G : GL(2,C) — R, G(A) = det A.

We showed in the past that dF;A = A+ A* and dG;A = tr(A),

so su(2) ={A e M(2,C): A= —-A*tr(A) =0}.

Then su(2) as a real vector space has as a basis the matrices { (

0

50) (o) (¢

which we denote E;, E», E5. Then for a,b € R, z = 21 + 129, w = wy + 1wy € C

WeletX:(aZ_ Z.),Y:(bz_ w»
-z —w —w —b

B T 0 1 B — 2wyt
wicxma =[x [v. (% D] =[x (2

2bi
2’(1)2i

N

so that the F; coordinate is Re(—4ab + 4dwyzi) = —4(ab + zows),

ad(X)ad(Y)E, = -X =

" (00)]

2w1i
<

—2U}11

—2b

I

so that the Fs coordinate is Im(—4abi — 4wy zi) = —4(ab + z1wy),

ad(X)ad(Y)E; = _X, 0

(o 5l = [ (o

)

(

4bZlZ
4dab + 4woZi

*

—4abi — 4w, 71

—2(Zw + 2w)i

*

so that the Ej3 coordinate is —2(Zw + 2w) = —4Re(Zw) = —4(z1w1 + 22ws).

Hence the Killing form is given by x(X,Y) = —tr(ad(X)ad(Y))
—(—4(ab + zowy) + —4(ab + zywy) + —4(z1w1 + 22ws)) = 8(ab + zywy + zows).

One could write this as a matrix,

S O
S oo O

0
0
8

Computation for si(2,R) on next page.

) € su(2) and compute ad(X)ad(Y) on E;:

—4ab + 4w2zi)

—4b21’i

*

—4abi — 4w, zi)

*
2(Zw + 2w)i

)



First of all, SL(2,R) = {A € M(2,R) : det A = 1}.
Then si(2,R) = kerd(det); = {A € M(2,R) : tr(A) = 0}.

. . 1 0 0 1 0 0 :
We have a basis of matrices { (O _1> , (0 0) , (1 0) } which we call I}, Fy, F3.

az —ax bs —b

Then for ai, as, as, by, by, b3 € R, letting X = (a1 a ) Y= (61 by )’

we compute ad(X)ad(Y) on Fj:

. [ [ 1 0 . 0 —2b2 . 2@2b3 + 2&3[)2 *
ad(X)ad(Y)Fl o X’ _Y’ (0 —1>]1 N |:X’ (2b3 0 )1 o ( * —2(12b3 —20,3b2)

so that the F} coordinate is 2asb3 + 2a3bs,

s <0 D))< (3 2)]-: #>*)

so that the Fy coordinate is 4a1b; + 2asbs,

ad(X)ad(Y)Fy = {Xa [K ((1) 8)” = {X» <_b22b1 _%QH - (4a1b112a3b2 :)

so that the F5 coordinate is 4a1b; + 2aqbs.

Then the Killing form is given by x(X,Y) = —tr(ad(X)ad(Y)) =
= —(ZCLng —+ 2@3[)2 -+ 4&1()1 -+ 2(12[)3 -+ 4@1()1 —+ 2&2[)3) = —8(11b1 — 4(12[)3 — 4&3[)2.

-8 0 0
One could write this as a matrix, | 0 0 —4
0 —4 0

(Note that SL(2,R) is not compact, and that this form is not positive semidefinite).



