Math 214, Homework 11.

1. Let $M=S^{2}$ embedded in \mathbb{R}^{3} with spherical coordinates $(\theta, \varphi) \mapsto(\sin \theta \cos \varphi, \sin \theta \sin \varphi, \cos \theta)$ so that the induced metric is given by:

$$
\begin{aligned}
d x^{2}+d y^{2}+d z^{2} & =d(\sin \theta \cos \varphi)^{2}+d(\sin \theta \sin \varphi)^{2}+d(\cos \theta)^{2} \\
& =(\cos \theta \cos \varphi d \theta-\sin \theta \sin \varphi d \varphi)^{2}+(\cos \theta \sin \varphi d \theta+\sin \theta \cos \varphi d \varphi)^{2}+\sin ^{2} \theta d \theta^{2} \\
& =d \theta^{2}+\sin ^{2} \theta d \varphi^{2}
\end{aligned}
$$

Then we need to compute the Levi-Cevita connection for this metric. The symbols are

$$
\begin{aligned}
\Gamma_{11}^{1} & =g^{11}\left(-\partial_{\theta} g_{11}+\partial_{\theta} g_{11}+\partial_{\theta} g_{11}\right) / 2=0 \\
\Gamma_{11}^{2} & =g^{22}\left(-\partial_{\varphi} g_{11}+\partial_{\theta} g_{12}+\partial_{\theta} g_{12}\right) / 2=0 \\
\Gamma_{12}^{1}=\Gamma_{21}^{1} & =g^{11}\left(-\partial_{\theta} g_{12}+\partial_{\theta} g_{21}+\partial_{\varphi} g_{11}\right) / 2=0 \\
\Gamma_{12}^{2}=\Gamma_{21}^{2} & =g^{22}\left(-\partial_{\varphi} g_{12}+\partial_{\theta} g_{22}+\partial_{\varphi} g_{12}\right) / 2=\cot \theta \\
\Gamma_{22}^{1} & =g^{11}\left(-\partial_{\theta} g_{22}+\partial_{\varphi} g_{12}+\partial_{\varphi} g_{21}\right) / 2=-\sin \theta \cos \theta \\
\Gamma_{22}^{2} & =g^{22}\left(-\partial_{\varphi} g_{22}+\partial_{\varphi} g_{22}+\partial_{\varphi} g_{22}\right) / 2=0
\end{aligned}
$$

Now, let $\theta_{0} \in(0, \pi), \gamma:[0,1] \rightarrow S^{2}$ be the curve $\gamma(t)=\left(\theta_{0}, 2 \pi t\right)$, and $u_{0}=\partial_{\varphi} \in T_{\gamma(0)} S^{2}$. The parallel transport of u_{0} by γ is given by the ODEs

$$
\left\{\begin{array}{l}
\frac{d u^{1}}{d t}+\Gamma_{j k}^{1}(\gamma(t)) \dot{\gamma}^{j}(t) u^{k}(t)=0 \\
\frac{d u^{2}}{d t}+\Gamma_{j k}^{2}(\gamma(t)) \dot{\gamma}^{j}(t) u^{k}(t)=0 \\
u^{1}(0)=0, \quad u^{2}(0)=1
\end{array}\right.
$$

Since $\dot{\gamma}^{1}(t)=0$ and $\dot{\gamma}^{2}(t)=2 \pi$ for all t, this becomes the system

$$
\left\{\begin{array}{l}
\frac{d u^{1}}{d t}-\left(2 \pi \sin \theta_{0} \cos \theta_{0}\right) u^{2}(t)=0 \\
\frac{d u^{2}}{d t}+\left(2 \pi \cot \theta_{0}\right) u^{1}(t)=0 \\
u^{1}(0)=0, \quad u^{2}(0)=1
\end{array}\right.
$$

Then $\frac{d^{2} u^{1}}{d t^{2}}+\left(4 \pi^{2} \cos ^{2} \theta_{0}\right) u^{1}(t)=0$ and $u^{1}(t)=C \sin \left(\left(2 \pi \cos \theta_{0}\right) t\right)$.
Then $u^{2}(t)=C\left(\csc \theta_{0}\right) \cos \left(\left(2 \pi \cos \theta_{0}\right) t\right), C=\sin \theta_{0}$, and we find:

$$
\left.u(t)=\left(\left(\sin \theta_{0}\right) \sin \left(\left(2 \pi \cos \theta_{0}\right) t\right), \cos \left(2 \pi \cos \theta_{0}\right) t\right)\right)
$$

We find that the desired parallel transport of u_{0} is

$$
u(1)=\sin \left(\theta_{0}\right) \sin \left(2 \pi \cos \theta_{0}\right) \partial_{\theta}+\cos \left(2 \pi \cos \theta_{0}\right) \partial_{\varphi} \in T_{\gamma(1)} S^{2}=T_{\gamma(0)} S^{2}
$$

2. For $\delta>0$, let M be the submanifold given by the embedding $(0,2 \pi] \times(-\delta, \delta) \rightarrow \mathbb{R}^{3}$, mapping $(\varphi, z) \mapsto((1+z \sin (\varphi / 2)) \cos \varphi,((1+z \sin (\varphi / 2)) \sin \varphi, z \cos (\varphi / 2))$.
Then the induced metric from \mathbb{R}^{3} is given by:

$$
\begin{aligned}
\sum_{i}\left(d x^{i}\right)^{2}= & d((1+z \sin (\varphi / 2)) \cos \varphi)^{2}+d\left(((1+z \sin (\varphi / 2)) \sin \varphi)^{2}+d(z \cos (\varphi / 2))^{2}\right. \\
= & (\sin (\varphi / 2) \cos \varphi d z+(z / 2 \cos (\varphi / 2) \cos \varphi-(1+z \sin (\varphi / 2)) \sin \varphi) d \varphi)^{2} \\
& +(\sin (\varphi / 2) \sin \varphi d z+(z / 2 \cos (\varphi / 2) \sin \varphi+(1+z \sin (\varphi / 2)) \cos \varphi) d \varphi)^{2} \\
& +(\cos (\varphi / 2) d z-z / 2 \sin (\varphi / 2) d \varphi)^{2} \\
= & d z^{2}+\left(z^{2} / 4+(1+z \sin (\varphi / 2))^{2}\right) d \varphi^{2}
\end{aligned}
$$

Note that since $g_{z z}=1, g_{z \varphi}=0$, we immediately have $\Gamma_{z z}^{z}=\Gamma_{z \varphi}^{z}=\Gamma_{\varphi z}^{z}=\Gamma_{z z}^{\varphi}=0$.
Then we can compute the Riemann curvature tensor component $R_{\varphi \varphi z}^{z}$:
$R_{\varphi \varphi z}^{z}=\partial_{\varphi} \Gamma_{z \varphi}^{z}-\partial_{z} \Gamma_{\varphi \varphi}^{z}+\Gamma_{z \varphi}^{z} \Gamma_{z \varphi}^{z}+\Gamma_{\varphi \varphi}^{z} \Gamma_{z \varphi}^{\varphi}-\Gamma_{z z}^{z} \Gamma_{\varphi \varphi}^{z}-\Gamma_{z \varphi}^{z} \Gamma_{\varphi \varphi}^{\varphi}=-\partial_{z} \Gamma_{\varphi \varphi}^{z}+\Gamma_{\varphi \varphi}^{z} \Gamma_{z \varphi}^{\varphi}$
We compute the Christoffel symbols:

$$
\begin{aligned}
& \Gamma_{\varphi \varphi}^{z}=\frac{1}{2} g^{z z}\left(-\partial_{z} g_{\varphi \varphi}\right)=-\frac{1}{2} \partial_{z}\left(z^{2} / 4+(1+z \sin (\varphi / 2))^{2}\right)=-z / 4-(1+z \sin (\varphi / 2)) \sin (\varphi / 2) . \\
& \Gamma_{z \varphi}^{\varphi}=\frac{1}{2} g^{\varphi \varphi}\left(\partial_{z} g_{\varphi \varphi}\right)=\frac{z / 4+(1+z \sin (\varphi / 2)) \sin (\varphi / 2)}{z^{2} / 4+(1+z \sin (\varphi / 2))^{2}}
\end{aligned}
$$

Then we find that
$R_{\varphi \varphi z}^{z}=1 / 4+\sin ^{2}(\varphi / 2)-\frac{(z / 4+(1+z \sin (\varphi / 2)) \sin (\varphi / 2))^{2}}{z^{2} / 4+(1+z \sin (\varphi / 2))^{2}}$
which, when $z=\varphi=0$, is $1 / 4$.
Hence the curvature does not vanish everywhere and the metric is not flat.
3. We proceed similarly as in the last problem.

For $\delta>0$, let M be the submanifold given by the embedding $\mathbb{R} \times(-\delta, \delta) \rightarrow \mathbb{R}^{3}$, mapping $(t, z) \mapsto(z \cos (\sin t), z \sin (\sin t), t)$.
Then the induced metric from \mathbb{R}^{3} is given by:

$$
\begin{aligned}
\sum_{i}\left(d x^{i}\right)^{2} & =d(z \cos (\sin t))^{2}+d(z \sin (\sin t))^{2}+d t^{2} \\
& =(\cos (\sin t) d z-z \sin (\sin t) \cos t d t)^{2}+(\sin (\sin t) d z+z \cos (\sin t) \cos t d t)^{2}+d t^{2} \\
& =d z^{2}+\left(1+z^{2} \cos ^{2} t\right) d t^{2}
\end{aligned}
$$

Note that since $g_{z z}=1, g_{z t}=0$, we immediately have $\Gamma_{z z}^{z}=\Gamma_{z t}^{z}=\Gamma_{t z}^{z}=\Gamma_{z z}^{t}=0$.
Then we can compute the Riemann curvature tensor component $R_{t t z}^{z}$:
$R_{t t z}^{z}=\partial_{t} \Gamma_{z t}^{z}-\partial_{z} \Gamma_{t t}^{z}+\Gamma_{z t}^{z} \Gamma_{z t}^{z}+\Gamma_{t t}^{z} \Gamma_{z t}^{t}-\Gamma_{z z}^{z} \Gamma_{t t}^{z}-\Gamma_{z t}^{z} \Gamma_{t t}^{t}=-\partial_{z} \Gamma_{t t}^{z}+\Gamma_{t t}^{z} \Gamma_{z t}^{t}$
We compute the Christoffel symbols:
$\Gamma_{t t}^{z}=\frac{1}{2} g^{z z}\left(-\partial_{z} g_{t t}\right)=-z \cos ^{2} t$
$\Gamma_{z t}^{t}=\frac{1}{2} g^{t t}\left(\partial_{z} g_{t t}\right)=\frac{z \cos ^{2} t}{1+z^{2} \cos ^{2} t}$
Then we find that
$R_{t t z}^{z}=\cos ^{2} t-\frac{z^{2} \cos ^{4} t}{1+z^{2} \cos ^{2} t}=\frac{\cos ^{2} t}{1+z^{2} \cos ^{2} t}$
which, when $z=t=0$, is 1 .
Hence the curvature does not vanish everywhere, and the metric is not flat.
4. Let G be a Lie group, $X, Y \in T_{e} G$. Consider the curve $\gamma(t)=\exp (t Y)$, which is both the geodesic through e in direction Y and the integral curve through e of the left-invariant vector field generated by Y (Nic 4.1.15).
Recall the parallel transport equation, $\nabla_{\dot{\gamma}(t)} u(t)=0$.
Let $u(t):=\left(L_{\gamma(t / 2)}\right)_{*}\left(R_{\gamma(t / 2)}\right)_{*} X$.
We have that $\dot{\gamma}(t)$ is the restriction of the left-invariant v.f. Z generated by Y to γ.
Let X_{i} be a global left-invariant frame for $T G$, and write $u(t)=\left.U^{i}(t) X_{i}\right|_{\gamma(t)}$.
Then $\nabla_{\dot{\gamma}(t)}(u(t))=\left.\sum_{i} \frac{d}{d t} U^{i}(t) X_{i}\right|_{\gamma(t)}+\left.\sum_{i} U^{i}(t)\left(\nabla_{Z} X_{i}\right)\right|_{\gamma(t)}$.
We have $\nabla_{Z} X_{i}=\frac{1}{2}\left[Z, X_{i}\right]$, by our formula for the Levi-Cevita connection on G.
We also have the following infinitessimal change of u in terms of the Ad representation:

$$
\begin{gathered}
u(t+\varepsilon)=\left(L_{\gamma((t+\varepsilon) / 2)}\right)_{*}\left(R_{\gamma((t+\varepsilon) / 2)}\right)_{*} X=\left(R_{\gamma(\varepsilon / 2)}\right)_{*}\left(L_{\gamma(\varepsilon / 2)}\right)_{*} u(t)= \\
=\left(R_{\gamma(\varepsilon / 2)}\right)_{*}\left(L_{\gamma(-\varepsilon / 2)}\right)_{*}\left(L_{\gamma(\varepsilon)}\right)_{*} u(t)=\operatorname{Ad}_{\gamma(-\varepsilon / 2)}\left(\left(L_{\gamma(\varepsilon)}\right)_{*} u(t)\right)
\end{gathered}
$$

(where we have exploited the fact that L_{g} and R_{g} commute).
So, noting that the X_{i} are invariant with change of time, we can write

$$
\begin{gathered}
\left.\sum_{i} \frac{d}{d t} U^{i}(t) X_{i}\right|_{\gamma(t)}=\lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon}\left(u(t+\varepsilon)-\left(L_{\gamma(\varepsilon)}\right)_{*} u(t)\right)= \\
=\lim _{\varepsilon \rightarrow 0}\left[\frac{1}{\varepsilon}\left(\operatorname{Ad}_{\gamma(-\varepsilon / 2)}-I\right)\right]\left(L_{\gamma(\varepsilon)}\right)_{*} u(t)=\operatorname{ad}_{-\frac{1}{2} Y} u(t)=\left[-\frac{1}{2} Z, u(t)\right]=-\frac{1}{2} U^{i}(t)\left[Z, X_{i}\right]
\end{gathered}
$$

where we've taken that the differential of Ad_{e} is ad (which is acting on $u(t), t$ constant, as though it's part of a left-invariant vector field: it's acting on $U^{i}(t) X_{i}$ with t fixed).
(If it's not kosher to assume this, here's a short proof: Since R_{g} and L_{h} commute, the flow of a left invariant vector field commutes with R_{g}, i.e. $\varphi_{t}(g)=R_{\varphi_{t}(e)} g$, and we can go by the Lie derivative:

$$
\begin{gathered}
{[-1 / 2 Z, u(t)]=\nabla_{-1 / 2 Z} u(t)=\lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon}\left(\exp (-\varepsilon / 2 Z)_{*} u(t)-u(t)\right)=} \\
=\lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon}\left(\left(R_{\exp (-\varepsilon / 2 Z)}\right)_{*} u(t)-u(t)\right)=\lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon}\left(\left(R_{\exp (-\varepsilon / 2 Z)}\right)_{*}\left(L_{\exp (-\varepsilon / 2 Z)}\right)_{*} u(t)-u(t)\right)
\end{gathered}
$$

which is where we started... Oh dear, this is a mess).
So we find that the parallel transport equation is satisfied:

$$
\nabla_{\dot{\gamma}(t)}(u(t))=\sum_{i}\left(\left.U^{i}(t)\left(\nabla_{Z} X_{i}\right)\right|_{\gamma(t)}+\left.\frac{d}{d t} U^{i}(t) X_{i}\right|_{\gamma(t)}\right)=\frac{1}{2} U^{i}(t)\left[Z, X_{i}\right]-\frac{1}{2} U^{i}(t)\left[Z, X_{i}\right]=0
$$

Since solutions to ODE are unique, $u(t)$ is indeed the parallel transport of X along $\gamma(t)$.
5. First of all, $S U(2)=\left\{A \in M(2, \mathbb{C}): A^{*} A=I\right.$, $\left.\operatorname{det} A=1\right\}$,
so $s u(2)=T_{I}(S U(2))=\operatorname{ker} d F_{I} \cap \operatorname{ker} d G_{I}$ where $F: G L(2, \mathbb{C}) \rightarrow G L(2, \mathbb{C})$,
$F(A)=A^{*} A$, and $G: G L(2, \mathbb{C}) \rightarrow \mathbb{R}, G(A)=\operatorname{det} A$.
We showed in the past that $d F_{I} A=A+A^{*}$ and $d G_{I} A=\operatorname{tr}(A)$,
so $s u(2)=\left\{A \in M(2, \mathbb{C}): A=-A^{*}, \operatorname{tr}(A)=0\right\}$.
Then $s u(2)$ as a real vector space has as a basis the matrices $\left\{\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right),\left(\begin{array}{cc}0 & i \\ i & 0\end{array}\right),\left(\begin{array}{cc}i & 0 \\ 0 & -i\end{array}\right)\right\}$,
which we denote E_{1}, E_{2}, E_{3}. Then for $a, b \in \mathbb{R}, z=z_{1}+i z_{2}, w=w_{1}+i w_{2} \in \mathbb{C}$
we let $X=\left(\begin{array}{cc}a i & z \\ -\bar{z} & -a i\end{array}\right), Y=\left(\begin{array}{cc}b i & w \\ -\bar{w} & -b i\end{array}\right) \in \operatorname{su}(2)$ and compute $\operatorname{ad}(X) \operatorname{ad}(Y)$ on E_{i} :
$\operatorname{ad}(X) \operatorname{ad}(Y) E_{1}=\left[X,\left[Y,\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)\right]\right]=\left[X,\left(\begin{array}{cc}-2 w_{2} i & 2 b i \\ 2 b i & 2 w_{2} i\end{array}\right)\right]=\left(\begin{array}{cc}4 b z_{1} i & -4 a b+4 w_{2} z i \\ 4 a b+4 w_{2} \bar{z} i & -4 b z_{1} i\end{array}\right)$
so that the E_{1} coordinate is $\operatorname{Re}\left(-4 a b+4 w_{2} z i\right)=-4\left(a b+z_{2} w_{2}\right)$,
$\operatorname{ad}(X) \operatorname{ad}(Y) E_{2}=\left[X,\left[Y,\left(\begin{array}{cc}0 & i \\ i & 0\end{array}\right)\right]\right]=\left[X,\left(\begin{array}{cc}2 w_{1} i & -2 b \\ 2 b & -2 w_{1} i\end{array}\right)\right]=\left(\begin{array}{cc}* & -4 a b i-4 w_{1} z i \\ -4 a b i-4 w_{1} \bar{z} i & *\end{array}\right)$
so that the E_{2} coordinate is $\operatorname{Im}\left(-4 a b i-4 w_{1} z i\right)=-4\left(a b+z_{1} w_{1}\right)$,
$\operatorname{ad}(X) \operatorname{ad}(Y) E_{3}=\left[X,\left[Y,\left(\begin{array}{cc}i & 0 \\ 0 & -i\end{array}\right)\right]\right]=\left[X,\left(\begin{array}{cc}0 & -2 i w \\ -2 i \bar{w} & 0\end{array}\right)\right]=\left(\begin{array}{cc}-2(\bar{z} w+z \bar{w}) i & * \\ * & 2(\bar{z} w+z \bar{w}) i\end{array}\right)$
so that the E_{3} coordinate is $-2(\bar{z} w+z \bar{w})=-4 \operatorname{Re}(\bar{z} w)=-4\left(z_{1} w_{1}+z_{2} w_{2}\right)$.
Hence the Killing form is given by $\kappa(X, Y)=-\operatorname{tr}(\operatorname{ad}(X) \operatorname{ad}(Y))=$ $=-\left(-4\left(a b+z_{2} w_{2}\right)+-4\left(a b+z_{1} w_{1}\right)+-4\left(z_{1} w_{1}+z_{2} w_{2}\right)\right)=8\left(a b+z_{1} w_{1}+z_{2} w_{2}\right)$.
One could write this as a matrix, $\left(\begin{array}{lll}8 & 0 & 0 \\ 0 & 8 & 0 \\ 0 & 0 & 8\end{array}\right)$.
Computation for $\operatorname{sl}(2, \mathbb{R})$ on next page.

First of all, $S L(2, \mathbb{R})=\{A \in M(2, \mathbb{R}): \operatorname{det} A=1\}$.
Then $s l(2, \mathbb{R})=\operatorname{ker} d(\operatorname{det})_{I}=\{A \in M(2, \mathbb{R}): \operatorname{tr}(A)=0\}$.
We have a basis of matrices $\left\{\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)\right\}$ which we call F_{1}, F_{2}, F_{3}.
Then for $a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3} \in \mathbb{R}$, letting $X=\left(\begin{array}{cc}a_{1} & a_{2} \\ a_{3} & -a_{1}\end{array}\right), Y=\left(\begin{array}{cc}b_{1} & b_{2} \\ b_{3} & -b_{1}\end{array}\right)$,
we compute $\operatorname{ad}(X) \operatorname{ad}(Y)$ on F_{i} :
$\operatorname{ad}(X) \operatorname{ad}(Y) F_{1}=\left[X,\left[Y,\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)\right]\right]=\left[X,\left(\begin{array}{cc}0 & -2 b_{2} \\ 2 b_{3} & 0\end{array}\right)\right]=\left(\begin{array}{cc}2 a_{2} b_{3}+2 a_{3} b_{2} & * \\ * & -2 a_{2} b_{3}-2 a_{3} b_{2}\end{array}\right)$
so that the F_{1} coordinate is $2 a_{2} b_{3}+2 a_{3} b_{2}$,
$\operatorname{ad}(X) \operatorname{ad}(Y) F_{2}=\left[X,\left[Y,\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)\right]\right]=\left[X,\left(\begin{array}{cc}-b_{3} & 2 b_{1} \\ 0 & b_{3}\end{array}\right)\right]=\left(\begin{array}{cc}* & 4 a_{1} b_{1}+2 a_{2} b_{3} \\ * & *\end{array}\right)$
so that the F_{2} coordinate is $4 a_{1} b_{1}+2 a_{2} b_{3}$,
$\operatorname{ad}(X) \operatorname{ad}(Y) F_{3}=\left[X,\left[Y,\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)\right]\right]=\left[X,\left(\begin{array}{cc}b_{2} & 0 \\ -2 b_{1} & -b_{2}\end{array}\right)\right]=\left(\begin{array}{cc}* & * \\ 4 a_{1} b_{1}+2 a_{3} b_{2} & *\end{array}\right)$
so that the F_{3} coordinate is $4 a_{1} b_{1}+2 a_{2} b_{3}$.
Then the Killing form is given by $\kappa(X, Y)=-\operatorname{tr}(\operatorname{ad}(X) \operatorname{ad}(Y))=$ $=-\left(2 a_{2} b_{3}+2 a_{3} b_{2}+4 a_{1} b_{1}+2 a_{2} b_{3}+4 a_{1} b_{1}+2 a_{2} b_{3}\right)=-8 a_{1} b_{1}-4 a_{2} b_{3}-4 a_{3} b_{2}$.
One could write this as a matrix, $\left(\begin{array}{ccc}-8 & 0 & 0 \\ 0 & 0 & -4 \\ 0 & -4 & 0\end{array}\right)$.
(Note that $S L(2, \mathbb{R})$ is not compact, and that this form is not positive semidefinite).

