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Math 214, Homework 12.

1. (i) As r → ∞, the functions hr and their differentials uniformly approach 0 so that
the induced metric is a small perturbation of dx2 + dy2.

Then for large enough r, even r > 5, there is only one geodesic connecting p to q,
the horizontal straight line path from p to q.



(ii) There is an r at which the single geodesic between p and q bifurcates into 3
geodesics, the same straight line, as well as a geodesic moving left of the peak
and a geodesic moving right of the peak.

From there, as r → 0, the number of geodesics connecting p and q diverges to
infinity. These geodesics are curves which originate from p, wind up the peak
before hitting the y-axis at a perpendicular angle, and then wind back down the
peak to hit q. For any given r, there are finitely many such geodesics because the
geodesic ODE is nice enough to exhibit continuous dependence on initial conditions,
which prevents occurrences of “infinite wrapping” leading to infinitely fast rotation
of the exit trajectory of the geodesic off the hill. Note that we have not shown any
geodesics which wrap around the hill multiple times in the picture.

But if we attempt to take a “limiting metric” and get a manifold with connected
component R2 \ {(0, 0)}, we find that there are no geodesics connecting p and q.

(iii) For most finite r, there are only finitely many geodesics between p and q. Consider
the case of r = 10. Then any path besides the straight line path connecting p
and q is not length extremizing locally, because one can look at a point where the
path has deviated from being a straight line and straighten it out to decrease the
distance (dh10 is very small so has little effect on the length) or further perturb it
outward to increase the distance. See the image for (i) where r = 2.

Hence there is only one geodesic connecting p and q when r = 10.



2. If f(x, y) = x2 − y2 and we consider the embedded submanifold S ⊂ R3 given by the
graph of f , we can compute the second fundamental form at (0, 0).

First of all, S is the image of the embedding F (x, y) = (x, y, f(x, y)),

so dF(0,0) =

1 0
0 1
0 0

 which has image R2 × {0}.

So the normal space to S at (0, 0) is spanned by the vector n = ∂z.

Then we have the trivial connection d on R3. The two coordinate vector fields on S are
given by ∂1 = ∂x + 2x∂z and ∂2 = ∂y − 2y∂z written in R3, and we compute d∂i∂j:

d∂1∂1 = d∂x∂x + 2xd∂z∂x + d∂x(2x∂z) + 2xd∂z(2x∂z) = 2∂z

d∂1∂2 = d∂x∂y + 2xd∂z∂y + d∂x(−2y∂z) + 2xd∂z(−2y∂z) = 0

d∂2∂1 = d∂y∂x − 2yd∂z∂x + d∂y(2x∂z)− 2yd∂z(2x∂z) = 0

d∂2∂2 = d∂y∂y − 2yd∂z∂y + d∂y(−2y∂z)− 2yd∂z(−2y∂z) = −2∂z

Then at (0, 0), N (∂i, ∂j) = ProjN(0,0)S
(d∂i∂j) = 〈d∂i∂j, n〉n is given by:

N (∂x, ∂x) = 〈2∂z, ∂z〉 ∂z = 2∂z,

N (∂x, ∂y) = N (∂y, ∂x) = 0,

N (∂y, ∂y) = 〈−2∂z, ∂z〉 ∂z = −2∂z,

or by the matrix

(
2 0
0 −2

)
∂z in the {∂x, ∂y} basis for T(0,0)S.



3. Let G be a compact Lie group with bi-invariant metric 〈·, ·〉. Then for X, Y, Z left-
invariant vector fields, recall that ∇XY = 1

2
[X, Y ] for the Levi-Cevita connection.

Recall that [X, Y ] is also left-invariant. Then we compute the Riemannian curvature:

R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z

= ∇X

(
1

2
[Y, Z]

)
−∇Y

(
1

2
[X,Z]

)
− 1

2
[[X, Y ], Z]

=
1

4
[X, [Y, Z]]− 1

4
[Y, [X,Z]]− 1

2
[[X, Y ], Z]

= −1

4
[[Y, Z], X]− 1

4
[[Z,X], Y ]− 1

4
[[X, Y ], Z]− 1

4
[[X, Y ], Z]

= −1

4
[[X, Y ], Z]



4. When X, Y, Z are left-invariant vector fields on compact Lie group G, 〈·, ·〉 bi-invariant,

the exterior derivative of the form B(X, Y, Z) = 〈[X, Y ], Z〉 can be computed by Prop.
14.32 in Lee. First, note that [X, Y ] is also left-invariant, so 〈[X, Y ], Z〉 is a constant.

Let W be another left-invariant vector field. Then we compute:

(dB)(X, Y, Z,W ) = X(B(Y, Z,W ))−Y (B(X,Z,W ))+Z(B(X, Y,W ))−W (B(X, Y, Z))

−B([X, Y ], Z,W ) + B([X,Z], Y,W )−B([X,W ], Y, Z)

−B([Y, Z], X,W ) + B([Y,W ], X, Z)−B([Z,W ], X, Y )

= 0− 0 + 0− 0− 〈[[X, Y ], Z],W 〉+ 〈[[X,Z], Y ],W 〉 − 〈[[X,W ], Y ], Z〉
− 〈[[Y, Z], X],W 〉+ 〈[[Y,W ], X], Z〉 − 〈[[Z,W ], X], Y 〉

= −〈[[X, Y ], Z] + [[Z,X], Y ] + [[Y, Z], X],W 〉
+ 〈[[W,X], Y ] + [[Y,W ], X], Z〉 − 〈[[Z,W ], X], Y 〉

= 0− 〈[[X, Y ],W ], Z〉+ 〈[[W,Z], X], Y 〉
= 〈[X, Y ], [W,Z]〉 − 〈[W,Z], [X, Y ]〉
= 0

Hence dB vanishes on all left-invariant vector fields, and (dB)|g = 0 for all g ∈ G.

So dB = 0 and B is a closed 3-form.

When G = SU(2) so that g = su(2) =

{(
ai b + ci

−b + ci −ai

)
: a, b, c ∈ R

}
,

to find the bi-invariant metric we need ad to be skew-adjoint on g, i.e:〈[(
a1i a2 + a3i

−a2 + a3i −a1i

)
,

(
b1i b2 + b3i

−b2 + b3i −b1i

)]
,

(
c1i c2 + c3i

−c2 + c3i −c1i

)〉
=

=

〈(
a1i a2 + a3i

−a2 + a3i −a1i

)
,

[(
b1i b2 + b3i

−b2 + b3i −b1i

)
,

(
c1i c2 + c3i

−c2 + c3i −c1i

)]〉
2

〈(
(a2b3 − a3b2)i (a3b1 − a1b3) + (a1b2 − a2b1)i

−(a3b1 − a1b3) + (a1b2 − a2b1)i −(a2b3 − a3b2)i

)
,

(
c1i c2 + c3i

−c2 + c3i −c1i

)〉
=

= 2

〈(
a1i a2 + a3i

−a2 + a3i −a1i

)
,

(
(b2c3 − b3c2)i (b3c1 − b1c3) + (b1c2 − b2c1)i

−(b3c1 − b1c3) + (b1c2 − b2c1)i −(b2c3 − b3c2)i

)〉
Let’s try

〈(
a1i a2 + a3i

−a2 + a3i −a1i

)
,

(
b1i b2 + b3i

−b2 + b3i −b1i

)〉
= 1

2
(a1b1 + a2b2 + a3b3):

c1(a2b3 − a3b2) + c2(a3b1 − a1b3) + c3(a1b2 − a2b1) = det

c1 c2 c3
a1 a2 a3
b1 b2 b3

 =

= det

a1 a2 a3
b1 b2 b3
c1 c2 c3

 = a1(b2c3 − b3c2) + a2(b3c1 − b1c3) + a3(b1c2 − b2c1)

which shows that the left-invariant metric generated by this inner product is bi-invariant,
and that B on SU(2) is the form B(X, Y, Z) = det(X, Y, Z).



5. Let (M, g) be a Riemannian manifold, ω ∈ Ωk(M), and X0, . . . , Xk ∈ Vect(M).

Let p ∈M and let x1, . . . , xn be normal coordinates at the point p.

Then for I = (i1, . . . , im), dxI = dxi1∧· · ·∧dxim , ω =
∑

I ωIdx
I , hat indicating omission,

k∑
i=0

(−1)i(∇Xi
ω)(X0, . . . , X̂i, . . . , Xk) =

k∑
i=0

∑
I

(−1)i(∇Xi
ωIdx

I)(X0, . . . , X̂i, . . . , Xk) =

=
k∑

i=0

∑
I

(−1)i(Xi(ωI)dx
I + ωI∇Xi

dxI)(X0, . . . , X̂i, . . . , Xk) =

=
k∑

i=0

∑
I

(−1)iXi(ωI)dx
I(X0, . . . , X̂i, . . . , Xk)

at p, since at p in normal coordinates ∇∂xi
∂xj = 0 for all i, j, so ∇Xi

dxI = 0

(since ∇Xi
dx`(∂xj

) = −dx`(∇Xi
∂xj

) = 0) for all i, j, `).

Now to the left hand side: We evaluate dω on the Xi:

dω(X0, . . . , Xk) =
∑
I

(dωI ∧dxI)(X0, . . . , Xk) =
∑
I

det


dωI(X0) · · · dωI(Xk)
dxi1(X0) · · · dxi1(Xk)

...
. . .

...
dxik(X0) · · · dxik(Xk)

 =

=
∑
I

k∑
j=0

(−1)jdωI(Xj) det

dxi1(X0) · · · ̂dxi1(Xj) · · · dxi1(Xk)
...

. . .
...

. . .
...

dxik(X0) · · · ̂dxik(Xj) · · · dxik(Xk)

 =

=
∑
I

k∑
j=0

(−1)jXj(ωI)dx
I(X0, . . . , X̂j, . . . , Xk)

which is the same as what we found for the right hand side. So we have shown

dω(X0, . . . , Xk) =
k∑

i=0

(−1)i(∇Xi
ω)(X0, . . . , X̂i, . . . , Xk)


