MATH 214 Homework 2

Yulong Dong

February 6, 2020

1 Problem 3-6

Define a function $w: \mathbb{C} \times \mathbb{C} \rightarrow \mathbb{R},\left(z_{1}, z_{2}\right) \mapsto \operatorname{Re}\left[z_{1}^{*} z_{2}\right]$. Then, in n-dimensional complex vector space \mathbb{C}^{n}, the function $\langle\cdot, \cdot\rangle: \mathbb{C}^{n} \times \mathbb{C}^{n} \rightarrow \mathbb{R},\left(u:=\left(u_{1}, \cdots, u_{n}\right), v:=\left(v_{1}, \cdots, v_{n}\right)\right) \mapsto \sum_{i=1}^{n} w\left(u_{i}, v_{i}\right)$ is the same as the inner product on $\mathbb{R}^{2 n}$ under the identification $\mathbb{C}^{n} \leftrightarrow \mathbb{R}^{2 n}$. The norm is induced as $\|z\|=\sqrt{(z, z)}=\sqrt{\sum_{i=1}^{n}\left|z_{i}\right|^{2}}$ as usual. Then the unit sphere in \mathbb{C}^{2} is defined by $\mathbb{S}^{3}:=\{z=$ $\left.\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2}:\|z\|^{2}=\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}=1\right\}$, which is the same as that under the identification $\mathbb{C}^{2} \leftrightarrow \mathbb{R}^{4}$. With the natural inclusion $\iota: \mathbb{S}^{3} \hookrightarrow \mathbb{C}^{2}$, I will compute the velocity vector of the curve $\gamma_{z}: \mathbb{R} \rightarrow \mathbb{S}^{3}, t \mapsto\left(e^{i t} z_{1}, e^{i t} z_{2}\right)$ under the standard coordinate system in \mathbb{C}^{2}. First, it is obvious that γ_{z} is a smooth map between \mathbb{R} and \mathbb{S}^{3} because it multiplies $\gamma_{z}(0)=\left(z_{1}, z_{2}\right) \in \mathbb{S}^{3}$ by a unit-modulus number $e^{i t}$ which keeps the point on \mathbb{S}^{3}. By definition, the velocity vector is $\gamma_{z}^{\prime}\left(t_{0}\right):=\mathrm{d} \gamma_{z}\left(\partial_{t} \mid t_{0}\right)=i e^{i t_{0}}\left(z_{1} \partial_{z_{1}}+z_{2} \partial_{z_{2}}\right) \leftrightarrow\left(i e^{i t} z_{1}, i e^{i t} z_{2}\right)$. It can be verified to be a tangent vector because $\left\langle\gamma_{z}\left(t_{0}\right), \gamma_{z}^{\prime}\left(t_{0}\right)\right\rangle=0$. Since $\left\|\gamma_{z}^{\prime}\left(t_{0}\right)\right\|=\sqrt{\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}}=1, \forall t_{0}$, the velocity vector of this smooth curve is never zero.

2 Problem 3-7

For any $p \in M$, let $\Phi: \mathcal{D}_{p} \rightarrow T_{p} M$ be the natural correspondence defined by $(\Phi v) f=v[f]_{p}$ where $[f]_{p}$ is any germ at point p. To prove it is an isomorphism, we need to prove that Φ is bijective.

Suppose $v \in \mathcal{D}_{p}$. Though the germ f is locally defined as a real-valued function on a neighborhood of point p, Φ is well-defined to map into $T_{p} M$ by the following reasoning. Given a germ $(f, U) \in$ $C_{p}^{\infty}(M)$ where $f: U \rightarrow \mathbb{R}$ and $U \subset M$ is a neighborhood of p, let $\tilde{f}: M \rightarrow \mathbb{R}$ be a globally defined smooth function that agrees with f on U such that $(\Phi v) \tilde{f}=v f$. Meanwhile, for other globally defined functions, say \tilde{g}, which agree with f on U, Proposition 3.8 shows that $(\Phi v) \tilde{f}=(\Phi v) \tilde{g}$. Thus, Φv is independent with the choice of \tilde{f} which means $\Phi: \mathcal{D}_{p} \rightarrow T_{p} M$ is well defined. Without ambiguity, I just denote $(\Phi v) \tilde{f}=(\Phi v) f$.

First prove the injectivity. Suppose two tangent vectors $\Phi v=\Phi u \in T_{p} M$. Then for any germ f at $p,(v-u)[f]_{p}=v[f]_{p}-u[f]_{p}=(\Phi v) f-(\Phi u) f=0$. Because it holds for any real-valued smooth function defined on a neighborhood of p, it means the derivation $v-u=0$. Thus, $v=u$.

Then prove the surjectivity. Let $\widetilde{v} \in T_{p} M$ be an arbitary tangent vector and (f, U) be any germ at p. Then, define the derivation on $C_{p}^{\infty}(M)$ by $v[f]_{p}=\tilde{v} \tilde{f}$ where $\left.\tilde{f}\right|_{U} \equiv f$. Because any other $\tilde{g} \in C^{\infty}(M)$ such that $\left.\tilde{g}\right|_{U} \equiv f$ has the same value $\tilde{v} \tilde{f}=\widetilde{v} \tilde{g}$ by Proposition 3.8. It is evident that the definition of derivation is independent with the choice of \tilde{f}. Let this map be $\Phi: v \mapsto \widetilde{v}$. Then,
Φ is surjective.

3 Problem 3-8

Let $\Psi: \mathcal{V}_{p} \rightarrow T_{p} M,[\gamma] \mapsto \Psi[\gamma]=\gamma^{\prime}(0)$. Let γ_{1}, γ_{2} are two smooth curves on M and $\gamma_{1} \sim \gamma_{2}$. Then for any smooth real-valued function $f, \gamma_{1}^{\prime}(0)(f)=\mathrm{d} f\left(\gamma_{1}^{\prime}(0)\right)=\left(f \circ \gamma_{1}\right)^{\prime}(0)=\left(f \circ \gamma_{2}\right)^{\prime}(0)=$ $\mathrm{d} f\left(\gamma_{2}^{\prime}(0)\right)=\gamma_{2}^{\prime}(0)(f)$. Since $\gamma_{1} \sim \gamma_{2}$, by definition, $\gamma_{1}^{\prime}(0)(f)=\gamma_{2}^{\prime}(0)(f)$ which means $\Psi\left[\gamma_{1}\right]=\Psi\left[\gamma_{2}\right]$. Thus, the $\operatorname{map} \Psi$ is well defined.

To prove it is injective, let $\gamma_{1}^{\prime}(0)=\gamma_{2}^{\prime}(0)$. Then by the argument above, $\gamma_{1} \sim \gamma_{2}$. Thus, Ψ is injective.

To prove it is surjective, let $v \in T_{p} M$ be any tangent vector. Under the local coordinate, suppose $v=v^{j} \partial_{j}$. Then, define the curve $\gamma:(-\epsilon, \epsilon) \rightarrow M$ as $\gamma(t)=p+\left(v^{1} t, v^{2} t, \cdots, v^{n} t\right)$ for small $|t|<\epsilon$. Then, $\gamma(0)=p, \gamma^{\prime}(0)=v$. Therefore, Ψ is surjective.

4 Problem 4-4

Let $\left(z_{1}, z_{2}\right)=\left(e^{2 \pi i i t_{1}}, e^{2 \pi i t_{2}}\right) \in \mathbb{T}^{2}$ be any point on the torus. Then, $\left|\gamma\left(t_{1}+n\right)-\left(z_{1}, z_{2}\right)\right|=$ $\left|e^{2 \pi i \alpha\left(t_{1}+n\right)}-e^{2 \pi i \alpha t_{2}}\right| \leq\left|2 \pi\left[\alpha\left(t_{1}-t_{2}+n\right)-m\right]\right|=2 \pi\left|(\alpha n-m)-\left(t_{2}-\alpha t_{1}\right)\right|$. Because $\alpha \mathbb{Z}+\mathbb{Z}$ is dense in \mathbb{R} when α is irrational, we can find two integers n, m such that $\left|(\alpha n-m)-\left(t_{2}-\alpha t_{1}\right)\right|<\epsilon$ for given t_{1}, t_{2} and $\forall \epsilon$. Thus, for any point on the torus and ϵ, there exists an integer n such that $\left|\gamma\left(t_{1}+n\right)-\left(z_{1}, z_{2}\right)\right|<2 \pi \epsilon$. Therefore, γ is dense in \mathbb{T}^{2}.

5 Problem 4-6

Suppose there is a smooth submersion $F: M \rightarrow \mathbb{R}^{k}$ for a given $k>0$. Then by Proposition 4.28, it is an open map. Meanwhile, because M is compact and \mathbb{R}^{k} is Hausdorff, F is a close map. Therefore, because nonempty manifold M is both open and close in its topology, $F(M)$ is both open and close in \mathbb{R}^{k}. Because \mathbb{R}^{k} is connected, it implies that $F(M)=\mathbb{R}^{k}$. Moreover, since F is continuous and M is compact, $F(M)=\mathbb{R}^{k}$ is compact. That contradicts that \mathbb{R}^{k} is not compact. Thus, for any $k>0$ and a nonempty compact manifold M, there doesn't exist a smooth submersion $F: M \rightarrow \mathbb{R}^{k}$.

