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1 Problem 5-1

The differential of the map is

dΦ(x, y, s, t) = (2xdx+ dy, 2xdx+ (2y + 1)dy + 2sds+ 2tdt) (1)

The preimage of the point (0, 1) is determined by the following smooth equations{
x2 + y = 0

x2 + y2 + s2 + t2 + y = 1
⇔

{
x2 + y = 0

y2 + s2 + t2 = 1
(2)

Thee appearence of dy makes dΦ 6= 0. It remains to show that two components of dΦ are linear
independent. Suppose (dΦ)1 ∝ (dΦ)2, then y = s = t = 0 or x = s = t = 0. Both cases are
forbidden by the equations of Φ−1(0, 1). That means, dΦ at any point in Φ−1(0, 1) is surjective.
Then, (0, 1) is a regular value of Φ.

Let S = Φ−1(0, 1). First define a function φ1 : R4 → R4, (x, y, s, t) 7→ (x, x2 + y, s, t). It is evident
that φ1 is bijective and smooth. Its inverse φ−11 : (x, y, s, t) 7→ (x, y − x2, s, t) is also smooth.

Thus, φ1 : R4 → R4 is a diffeomorphism. Then, S
φ1' φ1(S) = {(x, 0, y, z) : x4 + y2 + z2 =

1}. It remains to show that S′ = {(x, y, z) : x4 + y2 + z2 = 1} is diffeomorphic to S2. Define
φ2 : R3 → R3, (x, y, z) 7→ (x, y

√
1 + x2, z

√
1 + x2). Because x4 + (1 + x2)y2 + (1 + x2)z2 =

x2(x2 + y2 + z2) + y2 + z2 = 1 ⇔ x2 + y2 + z2 = 1. It can be concluded that φ2 is bijective
and smooth. Its inverse φ−12 : (x, y, z) 7→ (x, x√

1+x2
, z√

1+x2
) is smooth. Thus, φ2 : S2 → S′ is a

diffeomorphism. Therefore, S ' S2.

2 Problem 5-6

Define a function f : TRn → R, (p, v) 7→ |v|2. Its differential is df = 2
∑n

i=1 v
idvi which is

nonvanishing when vi’s are not all zero. Thus, f−1(1) is the set of regular point. Because the unit
tangent bundle is a regular level set of f , i.e., UM = f−1(1), it follows that UM is an embedded
submanifold of dimension 2m− 1.

3 Problem 5-15

Take the figure-eight curve for example. Take two immersion maps (−π, π)→ R2 as

β1(t) = (sin(2t), sin t), β2(t) = (− sin(2t), sin t) (3)
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Both two maps are smooth immersion and map (−π, π) onto the same subset in R2, i.e., figure-
eight curve and denote it as S, in different ways. One can find the difference through β′1(0) =
(2, 1), β′2(0) = (−2, 1) and β1(π − ε) = (−,+), β2(π − ε) = (+,+), etc. It can be visualized by the
following figure.

By Proposition 5.18, we are able to define the topology and smooth structure w.r.t. β1, β2 such
that S is a smooth submanifold in R2 and (−π, π) ' S. For each βj , j = 1, 2, define U ⊂ S to be
open if β−1j (U) ⊂ (−π, π) is open. It is evident that the topologies indeced by βj ’s are different.

The smooth structure is picked as (βj(U), φ ◦ β−1j ) for a chart (U, φ) in (−π, π).

4 Problem 5-18

(1)

”⇒”:

Let S be an k-embedded submanifold in Mm and f : S → N is a smooth function on S. Then, each
point p ∈ S, one can find a neighborhood p ∈ U ⊂M and a k-slice coordinate φ : U → Rm such that
φ(U ∩S) ⊂ {(x1, · · · , xk, xk+1, ·, xm) : xk+1 = · · · = xm = 0}. Due to the second contable axiom, S
can be covered by neighborhoods of finitely many points on it, i.e., {Ui, φi} where Ui 3 pi and φi
is the corresponding k-slice chart. Let {ρi} be a partition of unity that each ρi subordinates to Ui.
Define a smooth function fi on each Ui as fi◦φ−1i (x1, · · · , xm) ≡ f◦φ−1i (x1, · · · , xk, 0 · · · , 0). That is
function fi in the slice chart is independent with coordinates xk+1, · · · , xm. Then, fi|S∩Ui = f |S∩Ui .

Use the POU to glue them up and define f̃ =
∑

i fiρi. Since each p has a neighborhood intersecting

finitely many Ui’s in POU, the summation is finite for each point. That means f̃ : U → N is smooth
and f̃ |S = f where U = ∪iUi is a neighborhood of S in M .

”⇐”:

Suppose S is an immersed submanifold in M , then by the fact that immersed submanifold is locally
embedded, each p ∈ S, there is a neighborhood U of p in S that is embedded. Let f ∈ C∞(S) such
that supp(f) ⊂ U , f(p) = 1. It can be smoothly extended to f̃ on a neighborhood V of S in M . By
continuity, W := f̃−1((0,∞)) is open in M . Thus, W ∩ S is open in S. Since f(p) = f̃(p) = 1 > 0,
p ∈W ∩ S. Because U is embedded, there exists a local chart Up centered at p such that U ∩Up is
k-slice. Due to the support of f , Up ∩W ∩ S ⊂ Up ∩W ∩ U , which means each point p has a local
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k-slice chart Up ∩W ∩ S. Thus, S is an embedded submaniifold.

(2)

”⇒”:

The proof is similar to that in (1). The only difference is that we can now add the open subset M\S
into the cover. By assigning another POU ρ0 supported in M\S, the extended function is defined
as f̃ = ρ0+

∑
i fiρi. This function is then defined globally on M . Moreover, since supp(ρ0) ⊂M\S,

f̃ |S = f |S as argued in (1).

”⇐”:

Because f ∈ C∞(S) has a smooth extension to M , by the lemma in (1), it can be concluded that
S is an embedded submanifold in M . Let ι : S ↪→ M be the inclusion map that makes it into an
embedded submanifold. It remains to show that S is eembedded properly, i.e., ι is proper. Suppose
there exist a compact subset K ⊂ M such that ι−1(K) is noncompact in S. Then, there exists a
sequence of points {pi} without limit point. That means for each point in ι−1(K), any neighborhood
of it contains finitely many points in the sequence. Moreover, we can find neighborhood of each
point in the sequence {Ui 3 pi} such that they are disjoint. Assign a function φi on each Ui such
that φi(pi) = i and supp(φi) ⊂ Ui. Then the function φ =

∑
i φi is smooth because finite terms

involve when evaluating at each point. By assumption, it can be extended globally to φ̃ ∈ C∞(M)
such that φ̃|S = φ, namely, φ̃ ◦ ι = φ. By construction, φ̃(ι(pi))→∞. However, ι(pi) ∈ K which is
compact in M . φ̃ is smooth which means the image φ̃(K) is also compact. That is a contradiction.
Thus, ι is a proper embedding.

5 Outline of the proof of Whitney Embedding Theorem

The proof neeeds the following lemmas that is proved in the compact case.

Lemma 5.1. Any smooth manifold that can be covered by finitely many coordinate charts has an
injective immersion into RK for sufficiently large K.

Lemma 5.2. If a smooth m-manifold has an injective immersion into RK and K > 2m+ 1, then
it has an injective immersion into RK−1.

First step.

Lemma 5.3. Any non-compact smooth manifold has an injective immersion into RK for sufficiently
large K.

Proof. With Proposition 2.28, we are able to find smooth exhaustion functionf f such that f−1((−∞, c])
is compact in M . By the continuity of f , we define Mi = f([i, i + 1]), i ∈ Z which are compact
subsets in M . The compactness impliees that Mi can be covered by finitely many open sets

{Uj := 1, · · · , ki}. By slightly enlarging Mi to be an open subset, we define Ni =
(
∪kij=1Uj

)
∩

f−1((i− ε, i+ 1 + ε)) where ε ∈ (0, 1). It is evident that Ni ∩Nj = ∅ if |i− j| ≥ 2. Because Ni, an
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open submanifold in M , can be covered by finite open subsets, by Lemma 5.1 and Lemma 5.2, we
can find injective immersion φi : Ni → R2m+1.

We now assign a bump function ρi to each Ni such that ρi = 1 in an open neighborhood of Mi and
supp(ρi) ⊂ Ni. Define a function as

Φ : M → R4m+3, p 7→

(∑
i∈2Z

ρi(p)φi(p),
∑

i∈2Z+1

ρi(p)φi(p), f(p)

)
It is important that in two summations, at most one term in each is nonzero because Ni∩Nj =
∅ if |i− j| ≥ 2. Then, it is smooth. We need to show that Φ is an injective immersion.

1. injectivity. Φ(p1) = Φ(p2) ⇒ ∃i ∈ Z s.t. f(p1) = f(p2) ∈ [i, i + 1] ⇒ p1, p2 ∈ Mi ⊂ Ni ⇒
φi(p1) = φi(p2)⇒ p1 = p2. Here, the properties that φi is injective and that of the summation
are used.

2. immersion. WLOG, let φi(p) 6= 0 and i ∈ 2Z. Then, dΦ(p) = (dφi(p), ∗, ∗). The fact that φi
is an immersion implies that Φ is an immersion.

Second step. By Lemma 5.2 and Lemma 5.3, it can be concluded that there exists an injective
immersion Φ : M → R2m+1 for any non-compact manifold M .

Third step. We need another lamma to prove Whitney embedding theorem.

Lemma 5.4. A proper injective immersion is an embedding.

Theorem 5.5 (Whitney Embedding Theorem). Any smooth non-compact m-manifold can be
embedded into R2m+1.

Proof. Let Φ : M → R2m+1 is an injective immersion. Composite Φ with a diffeomorphism onto
unit ball R2m+1 → B2m+1, x 7→ x

1+|x|2 . For simplicity, denote the composite map again by Φ. Let

v ∈ S2m+1 and πv : R2m+2 → Pv = {u ∈ R2m+2 : u · v = 0} ' R2m+1, x 7→ x − (x · v)v be the
proection onto the normal hyperplane of given direction v = (v′, v2m+2). Define a function as

Φ̃ : M → R2m+2, p 7→ (Φ(p), f(p)) , Ψ = πv ◦ Φ̃, p 7→
(
∗, f(p)

(
1− (v2m+2)2

)
−
(
Φ(p) · v′

)
v2m+2

)
Because Φ is an injective immersion, Φ̃ is an injective immersion. We now need to reduce the
dimension of the target space by the projection πv. By a similar argument as in the compact case,
Ψ is an injective immersion almost everywhere in S2m+1. Then, we need to show that Ψ is proper.

Let K ⊂ {x ∈ R2m+2 : |x2m+2| < A} be a compact subset for some A > 0. Choose v such that∣∣v2m+2
∣∣ < 1. Because |Φ(p)| , |v′| ,

∣∣v2m+2
∣∣ < 1, it follows that

|f(p)| < A+ 1

|(1− (v2m+2)2)|
. (4)

Then, Ψ−1(K) ⊂ f−1([− A+1
|(1−(v2m+2)2)| ,

A+1
|(1−(v2m+2)2)| ]) which is a subset of a compact subset of M .

The continuity of Ψ implies that Ψ−1(K) is closed. Thus, Ψ−1(K) is compact. By definition, Ψ is
proper.
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