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1 Corollary 9.39

Rhe following theorem will be used in proving this corollary.

Theorem 1.1 (Theorem 9.38 in Lee’s book). If M is a smooth manifold and V,W ∈ X(M), then
LVW = [V,W ].

Suppose M is a smooth manifold with or without boundary, and V,W,X ∈ X(M).

1.1

LVW = −LWV .

Proof. By Theorem 1.1, left hand side = [V,W ] = −[W,V ] = −LWV = right hand side, where the
property of Lie bracket is used to interchange two vector fields in Lie bracket.

1.2

LV [W,X] = [LVW,X] + [W,LVX].

Proof. It is basically Jacobi identity, left hand side = [V, [W,X]] = [[V,W ], X] + [W, [V,X]] = right
hand side.

1.3

L[V,W ]X = LV LW − LWLVX.

Proof. It is again Jacobi identity, left hand side = [[V,W ], X] = [V, [W,X]] − [W, [V,X]] = right
hand side.
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1.4

If g ∈ C∞(M), then LV (gW ) = (V g)W + gLVW .

Proof. Use Proposition 8.28 (d) in Lee’s book, [fX, gY ] = fg[X,Y ] + (fXg)Y − (gY f)X,∀f, g ∈
C∞(M), X, Y ∈ X(M). Specifically take f ≡ 1 be a constant function and note that Y (f) = 0
since smooth vector field can be identified as derivation on smooth functions, it becomes [X, gY ] =
g[X,Y ] + X(g)Y . Rewrite them in terms of Lie derivative by Theorem 1.1, LX(gY ) = X(g)Y +
gLXY .

1.5

If F : M → N is a diffeomorphism, then F∗(LVX) = LF∗V F∗X.

Proof. Use Corollary 8.31 in Lee’s book, we have F∗([V,X]) = [F∗V, F∗X] when F is a diffeomor-
phism. Thus, by Theorem 1.1, left hand side = F∗([V,X]) = [F∗V, F∗X] = LF∗V (F∗X) = right
hand side.

2 Problem 9-8

S ⊂ M is an embedded submanifold and V ∈ X(M) is a smooth vector field that is nowhere
tangent to S. Let θ : D →M be the flow of V . Because S is a compact embedded submanifold, V
is complete on S due to Corollary 9.17, which means π2(D) ⊃ S. Let O = (R × S) ∩ D = D′ × S
where D′ ⊂ R and Φ = θ|O. Then, use Theorem 9.20 in Lee’s book, Φ : O → M is a smooth
submersion and there exists a smooth positive function δ : S → R such that Φ|Oδ is injective where
Oδ = {(t, p) ∈ O : |t| < δ(p)}. Because S is compact ad δ is cotiuous, the image δ(S) ∈ R+ is
compact, say δ(S) = [α, β] where 0 < α < β. Then, let ε = α

2 , [−ε, ε]× S = Oε ⊂ Oδ and Φ(Oε) is
an immersed submanifold of M . Because Oε is compact, by Proposition 5.21, Φ(Oε) is embedded
submanifold in M . Therefore, there exists ε > 0 such that Oε = (−ε, ε) × S and Φ : Oε → M is a
smooth embedding.

3 Problem 14-5

First prove that αi ∈ span{ωj : j = 1, · · · , k}. For any i = 1, · · · , k, αi ∧ ω1 ∧ ω2 ∧ · · · ∧ ωk =
(−1)i−1ω1 ∧ · · · ∧ (αi ∧ ωi) ∧ · · · ∧ ωk = (−1)i

∑k
j=1,j 6=i ω

1 ∧ · · · ∧ (αj ∧ ωj) ∧ · · · ∧ ωk = 0. Thus,

αi ∈ span{ωj : j = 1, · · · , k}. Because span{ωj : j = 1, · · · , k} is a smooth subbundle and αi’s
are smooth 1-form on U , by Proposition 10.22, the component functions of αi in terms of the local
frame {ωj : j = 1, · · · , k} is smooth. Thus, each αi can be written as a linear combination of
ω1, · · · , ωk with smooth coefficients.
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4 Problem 14-6

4.1

dx =
∂x

∂ρ
dρ+

∂x

∂θ
dθ +

∂x

∂ϕ
dϕ

= sinϕ cos θdρ− ρ sinϕ sin θdθ + ρ cosϕ cos θdϕ

dy =
∂y

∂ρ
dρ+

∂y

∂θ
dθ +

∂y

∂ϕ
dϕ

= sinϕ sin θdρ+ ρ sinϕ cos θdθ + ρ cosϕ sin θdϕ

dz =
∂z

∂ρ
dρ+

∂z

∂θ
dθ +

∂z

∂ϕ
dϕ

= cosϕdρ− ρ sinϕdϕ

(1)

Then,

dy ∧ dz = −ρ sinϕ cosϕ cos θdρ ∧ dθ − ρ2 sin2 ϕ cos θdθ ∧ dϕ+ ρ sin θdϕ ∧ dρ
dz ∧ dx = −ρ sinϕ cosϕ sin θdρ ∧ dθ − ρ2 sin2 ϕ sin θdθ ∧ dϕ− ρ cos θdϕ ∧ dρ
dx ∧ dy = ρ sin2 ϕdρ ∧ dθ − ρ2 sinϕ cosϕdθ ∧ dϕ

(2)

Thus,
ω = xdy ∧ dz + ydz ∧ dx+ zdx ∧ dy = −ρ3 sinϕdθ ∧ dϕ (3)

4.2

In Cartesian coordinate,

dω = dx ∧ dy ∧ dz + dy ∧ dz ∧ dx+ dz ∧ dx ∧ dy = 3dx ∧ dy ∧ dz (4)

In spherical coordinate,
dω = −3ρ2 sinϕdρ ∧ dθ ∧ dϕ (5)

Use Equation (1), Equation (2), it can be shown that

dx∧dy∧dz =
(
ρ sin2 ϕdρ ∧ dθ − ρ2 sinϕ cosϕdθ ∧ dϕ

)
∧(cosϕdρ− ρ sinϕdϕ) = −ρ2 sinϕdρ∧dθ∧dϕ

(6)
Thus, both expressions represent the same 3-form dω.

4.3

Let the inclusion map be ι : S2 → R3, (ϕ, θ) 7→ (x, y, z) = (sinϕ cos θ, sinϕ sin θ, cosϕ). The
coordinates (ϕ, θ) is well defined on the open subset (0, π)× (0, 2π). Then, the pullback of ω to S2
is

ι∗ω = sinϕdϕ ∧ dθ (7)
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4.4

For point p ∈ S2 in the spherical coordinate chart (ϕ, θ), it is evident that ι∗ω|p 6= 0 because
sinϕ 6= 0. For the north and south pole, i.e., ϕ = 0, π which can not be described by spherical
coordinate system, consider the 2-form in R3 which is ω|pole = ±1dx ∧ dy. Because the tangent
space of S2 at both poles as an embedded submanifold in R3 is parallel to x− y plane, the pullback
ι∗ω is nonzero at those two poles. Thus, it can be concluded that ι∗ω is nowhere zero.

5 Sketch of the proof of Theorem 9.38

Theorem 5.1 (Theorem 9.38 in Lee’s book). If M is a smooth manifold and V,W ∈ X(M), then
LVW = [V,W ].

Proof. Let R(V ) ⊂M be the regular points of V . By continuity, it is open. Consider points in M
in different cases.

1. p ∈ R(V ). By Theorem 9.22, we can choose canonical coordinate chart (ui) near p such
that V = ∂

∂u1
which means the flow in the chart is θt(u) = (u1 + t, u2, · · · , un). Thus,

d(θ−t)θt(x) is identity at every point for fixed t. Then, by the definition of Lie derivative,

(LVW )u =
∑

j
∂W j

∂u1
(u1, · · · , un) ∂

∂uj
|u which is the same as the Lie bracket [V,W ]u.

2. p ∈ supp(V ) = R(V ). By continuity.

3. p ∈M\supp(V ). V = 0 on a neighborhood of p implies that θt is identity in that neighborhood
for all t. Use the definition of Lie derivative, (LVW )p = 0.
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