MATH 214 Homework 6

Yulong Dong

March 6, 2020

1 Corollary 9.39

Rhe following theorem will be used in proving this corollary.

Theorem 1.1 (Theorem 9.38 in Lee's book). If M is a smooth manifold and $V, W \in \mathfrak{X}(M)$, then $\mathcal{L}_V W = [V, W]$.

Suppose M is a smooth manifold with or without boundary, and $V, W, X \in \mathfrak{X}(M)$.

1.1

$$\mathcal{L}_V W = -\mathcal{L}_W V.$$

Proof. By Theorem 1.1, left hand side = $[V, W] = -[W, V] = -\mathcal{L}_W V$ = right hand side, where the property of Lie bracket is used to interchange two vector fields in Lie bracket.

1.2

$$\mathcal{L}_V[W,X] = [\mathcal{L}_V W, X] + [W, \mathcal{L}_V X].$$

Proof. It is basically Jacobi identity, left hand side = [V, [W, X]] = [[V, W], X] + [W, [V, X]] = right hand side.

1.3

$$\mathcal{L}_{[V,W]}X = \mathcal{L}_V \mathcal{L}_W - \mathcal{L}_W \mathcal{L}_V X.$$

Proof. It is again Jacobi identity, left hand side = [[V, W], X] = [V, [W, X]] - [W, [V, X]] =right hand side.

1.4

If $g \in C^{\infty}(M)$, then $\mathcal{L}_V(gW) = (Vg)W + g\mathcal{L}_VW$.

Proof. Use Proposition 8.28 (d) in Lee's book, $[fX, gY] = fg[X, Y] + (fXg)Y - (gYf)X, \forall f, g \in C^{\infty}(M), X, Y \in \mathfrak{X}(M)$. Specifically take $f \equiv 1$ be a constant function and note that Y(f) = 0 since smooth vector field can be identified as derivation on smooth functions, it becomes [X, gY] = g[X, Y] + X(g)Y. Rewrite them in terms of Lie derivative by Theorem 1.1, $\mathcal{L}_X(gY) = X(g)Y + g\mathcal{L}_XY$.

1.5

If $F: M \to N$ is a diffeomorphism, then $F_*(\mathcal{L}_V X) = \mathcal{L}_{F_*V} F_* X$.

Proof. Use Corollary 8.31 in Lee's book, we have $F_*([V,X]) = [F_*V, F_*X]$ when F is a diffeomorphism. Thus, by Theorem 1.1, left hand side $= F_*([V,X]) = [F_*V, F_*X] = \mathcal{L}_{F_*V}(F_*X) = \text{right}$ hand side.

2 Problem 9-8

 $S \subset M$ is an embedded submanifold and $V \in \mathfrak{X}(M)$ is a smooth vector field that is nowhere tangent to S. Let $\theta: \mathcal{D} \to M$ be the flow of V. Because S is a compact embedded submanifold, V is complete on S due to Corollary 9.17, which means $\pi_2(\mathcal{D}) \supset S$. Let $\mathcal{O} = (\mathbb{R} \times S) \cap \mathcal{D} = \mathcal{D}' \times S$ where $\mathcal{D}' \subset \mathbb{R}$ and $\Phi = \theta|_{\mathcal{O}}$. Then, use Theorem 9.20 in Lee's book, $\Phi: \mathcal{O} \to M$ is a smooth submersion and there exists a smooth positive function $\delta: S \to \mathbb{R}$ such that $\Phi|_{\mathcal{O}_{\delta}}$ is injective where $\mathcal{O}_{\delta} = \{(t,p) \in \mathcal{O}: |t| < \delta(p)\}$. Because S is compact ad δ is cotiuous, the image $\delta(S) \in \mathbb{R}_+$ is compact, say $\delta(S) = [\alpha,\beta]$ where $0 < \alpha < \beta$. Then, let $\epsilon = \frac{\alpha}{2}, [-\epsilon,\epsilon] \times S = \overline{\mathcal{O}_{\epsilon}} \subset \mathcal{O}_{\delta}$ and $\Phi(\overline{\mathcal{O}_{\epsilon}})$ is an immersed submanifold of M. Because $\overline{\mathcal{O}_{\epsilon}}$ is compact, by Proposition 5.21, $\Phi(\overline{\mathcal{O}_{\epsilon}})$ is embedded submanifold in M. Therefore, there exists $\epsilon > 0$ such that $\mathcal{O}_{\epsilon} = (-\epsilon,\epsilon) \times S$ and $\Phi: \mathcal{O}_{\epsilon} \to M$ is a smooth embedding.

3 Problem 14-5

First prove that $\alpha^i \in \operatorname{span}\{\omega^j: j=1,\cdots,k\}$. For any $i=1,\cdots,k,\ \alpha^i \wedge \omega^1 \wedge \omega^2 \wedge \cdots \wedge \omega^k=(-1)^{i-1}\omega^1 \wedge \cdots \wedge (\alpha^i \wedge \omega^i) \wedge \cdots \wedge \omega^k=(-1)^i \sum_{j=1,j\neq i}^k \omega^1 \wedge \cdots \wedge (\alpha^j \wedge \omega^j) \wedge \cdots \wedge \omega^k=0$. Thus, $\alpha^i \in \operatorname{span}\{\omega^j: j=1,\cdots,k\}$. Because $\operatorname{span}\{\omega^j: j=1,\cdots,k\}$ is a smooth subbundle and α^i 's are smooth 1-form on U, by Proposition 10.22, the component functions of α^i in terms of the local frame $\{\omega^j: j=1,\cdots,k\}$ is smooth. Thus, each α^i can be written as a linear combination of ω^1,\cdots,ω^k with smooth coefficients.

4 Problem 14-6

4.1

$$dx = \frac{\partial x}{\partial \rho} d\rho + \frac{\partial x}{\partial \theta} d\theta + \frac{\partial x}{\partial \varphi} d\varphi$$

$$= \sin \varphi \cos \theta d\rho - \rho \sin \varphi \sin \theta d\theta + \rho \cos \varphi \cos \theta d\varphi$$

$$dy = \frac{\partial y}{\partial \rho} d\rho + \frac{\partial y}{\partial \theta} d\theta + \frac{\partial y}{\partial \varphi} d\varphi$$

$$= \sin \varphi \sin \theta d\rho + \rho \sin \varphi \cos \theta d\theta + \rho \cos \varphi \sin \theta d\varphi$$

$$dz = \frac{\partial z}{\partial \rho} d\rho + \frac{\partial z}{\partial \theta} d\theta + \frac{\partial z}{\partial \varphi} d\varphi$$

$$= \cos \varphi d\rho - \rho \sin \varphi d\varphi$$
(1)

Then,

$$dy \wedge dz = -\rho \sin \varphi \cos \varphi \cos \theta d\rho \wedge d\theta - \rho^2 \sin^2 \varphi \cos \theta d\theta \wedge d\varphi + \rho \sin \theta d\varphi \wedge d\rho$$

$$dz \wedge dx = -\rho \sin \varphi \cos \varphi \sin \theta d\rho \wedge d\theta - \rho^2 \sin^2 \varphi \sin \theta d\theta \wedge d\varphi - \rho \cos \theta d\varphi \wedge d\rho$$

$$dx \wedge dy = \rho \sin^2 \varphi d\rho \wedge d\theta - \rho^2 \sin \varphi \cos \varphi d\theta \wedge d\varphi$$
(2)

Thus,

$$\omega = xdy \wedge dz + ydz \wedge dx + zdx \wedge dy = -\rho^{3} \sin \varphi d\theta \wedge d\varphi \tag{3}$$

4.2

In Cartesian coordinate,

$$d\omega = dx \wedge dy \wedge dz + dy \wedge dz \wedge dx + dz \wedge dx \wedge dy = 3dx \wedge dy \wedge dz \tag{4}$$

In spherical coordinate,

$$d\omega = -3\rho^2 \sin\varphi d\rho \wedge d\theta \wedge d\varphi \tag{5}$$

Use Equation (1), Equation (2), it can be shown that

$$dx \wedge dy \wedge dz = \left(\rho \sin^2 \varphi d\rho \wedge d\theta - \rho^2 \sin \varphi \cos \varphi d\theta \wedge d\varphi\right) \wedge (\cos \varphi d\rho - \rho \sin \varphi d\varphi) = -\rho^2 \sin \varphi d\rho \wedge d\theta \wedge d\varphi$$
(6)

Thus, both expressions represent the same 3-form $d\omega$.

4.3

Let the inclusion map be $\iota: \mathbb{S}^2 \to \mathbb{R}^3$, $(\varphi, \theta) \mapsto (x, y, z) = (\sin \varphi \cos \theta, \sin \varphi \sin \theta, \cos \varphi)$. The coordinates (φ, θ) is well defined on the open subset $(0, \pi) \times (0, 2\pi)$. Then, the pullback of ω to \mathbb{S}^2 is

$$\iota^* \omega = \sin \varphi d\varphi \wedge d\theta \tag{7}$$

4.4

For point $p \in \mathbb{S}^2$ in the spherical coordinate chart (φ, θ) , it is evident that $\iota^*\omega|_p \neq 0$ because $\sin \varphi \neq 0$. For the north and south pole, *i.e.*, $\varphi = 0, \pi$ which can not be described by spherical coordinate system, consider the 2-form in \mathbb{R}^3 which is $\omega|_{\text{pole}} = \pm 1 dx \wedge dy$. Because the tangent space of \mathbb{S}^2 at both poles as an embedded submanifold in \mathbb{R}^3 is parallel to x - y plane, the pullback $\iota^*\omega$ is nonzero at those two poles. Thus, it can be concluded that $\iota^*\omega$ is nowhere zero.

5 Sketch of the proof of Theorem 9.38

Theorem 5.1 (Theorem 9.38 in Lee's book). If M is a smooth manifold and $V, W \in \mathfrak{X}(M)$, then $\mathcal{L}_V W = [V, W]$.

Proof. Let $\mathcal{R}(V) \subset M$ be the regular points of V. By continuity, it is open. Consider points in M in different cases.

- 1. $p \in \mathcal{R}(V)$. By Theorem 9.22, we can choose canonical coordinate chart (u^i) near p such that $V = \frac{\partial}{\partial u^1}$ which means the flow in the chart is $\theta_t(u) = (u^1 + t, u^2, \dots, u^n)$. Thus, $d(\theta_{-t})_{\theta_t(x)}$ is identity at every point for fixed t. Then, by the definition of Lie derivative, $(\mathcal{L}_V W)_u = \sum_j \frac{\partial W^j}{\partial u^1} (u^1, \dots, u^n) \frac{\partial}{\partial u^j} |_u$ which is the same as the Lie bracket $[V, W]_u$.
- 2. $p \in \text{supp}(V) = \overline{\mathcal{R}(V)}$. By continuity.
- 3. $p \in M \setminus \sup(V)$. V = 0 on a neighborhood of p implies that θ_t is identity in that neighborhood for all t. Use the definition of Lie derivative, $(\mathcal{L}_V W)_p = 0$.