MATH 214 Homework 6

Yulong Dong

March 6, 2020

1 Corollary 9.39

Rhe following theorem will be used in proving this corollary.
Theorem 1.1 (Theorem 9.38 in Lee's book). If M is a smooth manifold and $V, W \in \mathfrak{X}(M)$, then $\mathcal{L}_{V} W=[V, W]$.

Suppose M is a smooth manifold with or without boundary, and $V, W, X \in \mathfrak{X}(M)$.

1.1

$\mathcal{L}_{V} W=-\mathcal{L}_{W} V$.

Proof. By Theorem 1.1, left hand side $=[V, W]=-[W, V]=-\mathcal{L}_{W} V=$ right hand side, where the property of Lie bracket is used to interchange two vector fields in Lie bracket.

1.2

$\mathcal{L}_{V}[W, X]=\left[\mathcal{L}_{V} W, X\right]+\left[W, \mathcal{L}_{V} X\right]$.

Proof. It is basically Jacobi identity, left hand side $=[V,[W, X]]=[[V, W], X]+[W,[V, X]]=$ right hand side.

1.3

$\mathcal{L}_{[V, W]} X=\mathcal{L}_{V} \mathcal{L}_{W}-\mathcal{L}_{W} \mathcal{L}_{V} X$.

Proof. It is again Jacobi identity, left hand side $=[[V, W], X]=[V,[W, X]]-[W,[V, X]]=$ right hand side.

1.4

If $g \in C^{\infty}(M)$, then $\mathcal{L}_{V}(g W)=(V g) W+g \mathcal{L}_{V} W$.

Proof. Use Proposition 8.28 (d) in Lee's book, $[f X, g Y]=f g[X, Y]+(f X g) Y-(g Y f) X, \forall f, g \in$ $C^{\infty}(M), X, Y \in \mathfrak{X}(M)$. Specifically take $f \equiv 1$ be a constant function and note that $Y(f)=0$ since smooth vector field can be identified as derivation on smooth functions, it becomes $[X, g Y]=$ $g[X, Y]+X(g) Y$. Rewrite them in terms of Lie derivative by Theorem 1.1, $\mathcal{L}_{X}(g Y)=X(g) Y+$ $g \mathcal{L}_{X} Y$.

1.5

If $F: M \rightarrow N$ is a diffeomorphism, then $F_{*}\left(\mathcal{L}_{V} X\right)=\mathcal{L}_{F_{*} V} F_{*} X$.

Proof. Use Corollary 8.31 in Lee's book, we have $F_{*}([V, X])=\left[F_{*} V, F_{*} X\right]$ when F is a diffeomorphism. Thus, by Theorem 1.1, left hand side $=F_{*}([V, X])=\left[F_{*} V, F_{*} X\right]=\mathcal{L}_{F_{*} V}\left(F_{*} X\right)=$ right hand side.

2 Problem 9-8

$S \subset M$ is an embedded submanifold and $V \in \mathfrak{X}(M)$ is a smooth vector field that is nowhere tangent to S. Let $\theta: \mathcal{D} \rightarrow M$ be the flow of V. Because S is a compact embedded submanifold, V is complete on S due to Corollary 9.17, which means $\pi_{2}(\mathcal{D}) \supset S$. Let $\mathcal{O}=(\mathbb{R} \times S) \cap \mathcal{D}=\mathcal{D}^{\prime} \times S$ where $\mathcal{D}^{\prime} \subset \mathbb{R}$ and $\Phi=\left.\theta\right|_{\mathcal{O}}$. Then, use Theorem 9.20 in Lee's book, $\Phi: \mathcal{O} \rightarrow M$ is a smooth submersion and there exists a smooth positive function $\delta: S \rightarrow \mathbb{R}$ such that $\left.\Phi\right|_{\mathcal{O}_{\delta}}$ is injective where $\mathcal{O}_{\delta}=\{(t, p) \in \mathcal{O}:|t|<\delta(p)\}$. Because S is compact ad δ is cotiuous, the image $\delta(S) \in \mathbb{R}_{+}$is compact, say $\delta(S)=[\alpha, \beta]$ where $0<\alpha<\beta$. Then, let $\epsilon=\frac{\alpha}{2},[-\epsilon, \epsilon] \times S=\overline{\mathcal{O}_{\epsilon}} \subset \mathcal{O}_{\delta}$ and $\Phi\left(\overline{\mathcal{O}_{\epsilon}}\right)$ is an immersed submanifold of M. Because $\overline{\mathcal{O}_{\epsilon}}$ is compact, by Proposition 5.21, $\Phi\left(\overline{\mathcal{O}_{\epsilon}}\right)$ is embedded submanifold in M. Therefore, there exists $\epsilon>0$ such that $\mathcal{O}_{\epsilon}=(-\epsilon, \epsilon) \times S$ and $\Phi: \mathcal{O}_{\epsilon} \rightarrow M$ is a smooth embedding.

3 Problem 14-5

First prove that $\alpha^{i} \in \operatorname{span}\left\{\omega^{j}: j=1, \cdots, k\right\}$. For any $i=1, \cdots, k, \alpha^{i} \wedge \omega^{1} \wedge \omega^{2} \wedge \cdots \wedge \omega^{k}=$ $(-1)^{i-1} \omega^{1} \wedge \cdots \wedge\left(\alpha^{i} \wedge \omega^{i}\right) \wedge \cdots \wedge \omega^{k}=(-1)^{i} \sum_{j=1, j \neq i}^{k} \omega^{1} \wedge \cdots \wedge\left(\alpha^{j} \wedge \omega^{j}\right) \wedge \cdots \wedge \omega^{k}=0$. Thus, $\alpha^{i} \in \operatorname{span}\left\{\omega^{j}: j=1, \cdots, k\right\}$. Because span $\left\{\omega^{j}: j=1, \cdots, k\right\}$ is a smooth subbundle and α^{i} 's are smooth 1-form on U, by Proposition 10.22, the component functions of α^{i} in terms of the local frame $\left\{\omega^{j}: j=1, \cdots, k\right\}$ is smooth. Thus, each α^{i} can be written as a linear combination of $\omega^{1}, \cdots, \omega^{k}$ with smooth coefficients.

4 Problem 14-6

4.1

$$
\begin{align*}
d x & =\frac{\partial x}{\partial \rho} d \rho+\frac{\partial x}{\partial \theta} d \theta+\frac{\partial x}{\partial \varphi} d \varphi \\
& =\sin \varphi \cos \theta d \rho-\rho \sin \varphi \sin \theta d \theta+\rho \cos \varphi \cos \theta d \varphi \\
d y & =\frac{\partial y}{\partial \rho} d \rho+\frac{\partial y}{\partial \theta} d \theta+\frac{\partial y}{\partial \varphi} d \varphi \tag{1}\\
& =\sin \varphi \sin \theta d \rho+\rho \sin \varphi \cos \theta d \theta+\rho \cos \varphi \sin \theta d \varphi \\
d z & =\frac{\partial z}{\partial \rho} d \rho+\frac{\partial z}{\partial \theta} d \theta+\frac{\partial z}{\partial \varphi} d \varphi \\
& =\cos \varphi d \rho-\rho \sin \varphi d \varphi
\end{align*}
$$

Then,

$$
\begin{align*}
& d y \wedge d z=-\rho \sin \varphi \cos \varphi \cos \theta d \rho \wedge d \theta-\rho^{2} \sin ^{2} \varphi \cos \theta d \theta \wedge d \varphi+\rho \sin \theta d \varphi \wedge d \rho \\
& d z \wedge d x=-\rho \sin \varphi \cos \varphi \sin \theta d \rho \wedge d \theta-\rho^{2} \sin ^{2} \varphi \sin \theta d \theta \wedge d \varphi-\rho \cos \theta d \varphi \wedge d \rho \tag{2}\\
& d x \wedge d y=\rho \sin ^{2} \varphi d \rho \wedge d \theta-\rho^{2} \sin \varphi \cos \varphi d \theta \wedge d \varphi
\end{align*}
$$

Thus,

$$
\begin{equation*}
\omega=x d y \wedge d z+y d z \wedge d x+z d x \wedge d y=-\rho^{3} \sin \varphi d \theta \wedge d \varphi \tag{3}
\end{equation*}
$$

4.2

In Cartesian coordinate,

$$
\begin{equation*}
d \omega=d x \wedge d y \wedge d z+d y \wedge d z \wedge d x+d z \wedge d x \wedge d y=3 d x \wedge d y \wedge d z \tag{4}
\end{equation*}
$$

In spherical coordinate,

$$
\begin{equation*}
d \omega=-3 \rho^{2} \sin \varphi d \rho \wedge d \theta \wedge d \varphi \tag{5}
\end{equation*}
$$

Use Equation (1), Equation (2), it can be shown that
$d x \wedge d y \wedge d z=\left(\rho \sin ^{2} \varphi d \rho \wedge d \theta-\rho^{2} \sin \varphi \cos \varphi d \theta \wedge d \varphi\right) \wedge(\cos \varphi d \rho-\rho \sin \varphi d \varphi)=-\rho^{2} \sin \varphi d \rho \wedge d \theta \wedge d \varphi$
Thus, both expressions represent the same 3 -form $d \omega$.

4.3

Let the inclusion map be $\iota: \mathbb{S}^{2} \rightarrow \mathbb{R}^{3},(\varphi, \theta) \mapsto(x, y, z)=(\sin \varphi \cos \theta, \sin \varphi \sin \theta, \cos \varphi)$. The coordinates (φ, θ) is well defined on the open subset $(0, \pi) \times(0,2 \pi)$. Then, the pullback of ω to \mathbb{S}^{2} is

$$
\begin{equation*}
\iota^{*} \omega=\sin \varphi d \varphi \wedge d \theta \tag{7}
\end{equation*}
$$

4.4

For point $p \in \mathbb{S}^{2}$ in the spherical coordinate chart (φ, θ), it is evident that $\left.\iota^{*} \omega\right|_{p} \neq 0$ because $\sin \varphi \neq 0$. For the north and south pole, i.e., $\varphi=0, \pi$ which can not be described by spherical coordinate system, consider the 2-form in \mathbb{R}^{3} which is $\left.\omega\right|_{\text {pole }}= \pm 1 d x \wedge d y$. Because the tangent space of \mathbb{S}^{2} at both poles as an embedded submanifold in \mathbb{R}^{3} is parallel to $x-y$ plane, the pullback $\iota^{*} \omega$ is nonzero at those two poles. Thus, it can be concluded that $\iota^{*} \omega$ is nowhere zero.

5 Sketch of the proof of Theorem 9.38

Theorem 5.1 (Theorem 9.38 in Lee's book). If M is a smooth manifold and $V, W \in \mathfrak{X}(M)$, then $\mathcal{L}_{V} W=[V, W]$.

Proof. Let $\mathcal{R}(V) \subset M$ be the regular points of V. By continuity, it is open. Consider points in M in different cases.

1. $p \in \mathcal{R}(V)$. By Theorem 9.22 , we can choose canonical coordinate chart (u^{i}) near p such that $V=\frac{\partial}{\partial u^{1}}$ which means the flow in the chart is $\theta_{t}(u)=\left(u^{1}+t, u^{2}, \cdots, u^{n}\right)$. Thus, $d\left(\theta_{-t}\right)_{\theta_{t}(x)}$ is identity at every point for fixed t. Then, by the definition of Lie derivative, $\left(\mathcal{L}_{V} W\right)_{u}=\left.\sum_{j} \frac{\partial W^{j}}{\partial u^{1}}\left(u^{1}, \cdots, u^{n}\right) \frac{\partial}{\partial u^{j}}\right|_{u}$ which is the same as the Lie bracket $[V, W]_{u}$.
2. $p \in \operatorname{supp}(V)=\overline{\mathcal{R}(V)}$. By continuity.
3. $p \in M \backslash \operatorname{supp}(V)$. $V=0$ on a neighborhood of p implies that θ_{t} is identity in that neighborhood for all t. Use the definition of Lie derivative, $\left(\mathcal{L}_{V} W\right)_{p}=0$.
