
Name: Mason Haberle SID: 3032732029 Date: 3/7/20

Math 214, Homework 7.

Ex. 14.28. Recall the grad operator∇ : C∞(R3)→ X(R3), the curl operator∇× : X(R3)→ X(R3),
and the divergence operator ∇· : X(R3)→ C∞(R3). We also have
the index-lowering isomorphism [ : X(R3)→ Ω1(R3) which sends X i ∂

∂xi
7→ X iδijdx

j,
the isomorphism β : X(R3)→ Ω2(R3) sending X 7→ X y (dx ∧ dy ∧ dz)
and the isomorphism ∗ : C∞(R3)→ Ω3(R3) sending f 7→ f dx ∧ dy ∧ dz.
We want to show that the following diagram commutes:

C∞(R3) X(R3) X(R3) C∞(R3)

Ω0(R3) Ω1(R3) Ω2(R3) Ω3(R3)

∇

Id

∇×

[

∇·

β ∗

d d d

We’ll show the first and last squares for Rn. To begin with:

Let f ∈ C∞(Rn). Then [(∇f) = [
(∑

i
∂f
∂xi

∂
∂xi

)
= ∂f

∂xi
δijdx

j = ∂f
∂xj
dxj = df

So the first square commutes for Rn, and in particular for R3.

For the last square, let X = Xj ∂
∂xj
∈ X(Rn).

Then ∗(∇ ·X) = ∗(
∑

j
∂Xj

∂xj
) =

(∑
j
∂Xj

∂xj

) ∧
k dx

k, while

d(β(X)) = d
(
X y∧k dx

k
)

= d
(∑

j(−1)j+1Xjdx1 ∧ · · · ∧ dxj−1 ∧ dxj+1 ∧ · · · ∧ dxn
)

=

=
∑

j(−1)j+1dXj ∧ dx1 ∧ · · · ∧ dxj−1 ∧ dxj+1 ∧ · · · ∧ dxn =
(∑

j
∂Xj

∂xj

)∧
k dx

k.

So the last square commutes for Rn, and in particular for R3.

Finally, the middle square commutes for R3. Indeed, for X ∈ X(R3) we compute:

β(∇×X) = β
((

∂X3

∂y
− ∂X2

∂z

)
∂
∂x

+
(
∂X1

∂z
− ∂X3

∂x

)
∂
∂y

+
(
∂X2

∂x
− ∂X1

∂y

)
∂
∂z

)
=

=
(
∂X3

∂y
− ∂X2

∂z

)
dy ∧ dz −

(
∂X1

∂z
− ∂X3

∂x

)
dx ∧ dz +

(
∂X2

∂x
− ∂X1

∂y

)
dx ∧ dy

while d([(X)) = d (X1dx+X2dy +X3dz) =

= ∂X1

∂y
dy ∧ dx+ ∂X1

∂z
dz ∧ dx+ ∂X2

∂x
dx ∧ dy + ∂X2

∂z
dz ∧ dy + ∂X3

∂x
dx ∧ dz + ∂X3

∂y
dy ∧ dz =

=
(
∂X3

∂y
− ∂X2

∂z

)
dy ∧ dz −

(
∂X1

∂z
− ∂X3

∂x

)
dx ∧ dz +

(
∂X2

∂x
− ∂X1

∂y

)
dx ∧ dy

So the middle square commutes for R3, and the whole diagram commutes for R3.

In particular, since d2 = 0 and the vertical maps are isomorphisms, hence invertible, for
any f ∈ C∞(R3) we have ∇×(∇f) = 0 and for any X ∈ X(R3) we have ∇·(∇×X) = 0.



7-2. Let G be a Lie group.

(a) Let m : G × G → G be the multiplication map, and identify T(e,e)(G × G) with
TeG ⊕ TeG. Let (U,ϕ) be a chart at e ∈ G with ϕ(0) = e, so that (U × U,ϕ × ϕ)
is a chart at (e, e) ∈ G×G. Then for X ∈ Rn,

lim
ε→0

1

ε
ϕ(m((ϕ×ϕ)−1(0+εX, 0))) = lim

ε→0

1

ε
ϕ(m(ϕ−1(εX), e)) = lim

ε→0

1

ε
ϕ(ϕ−1(εX)) = X

Going back to G, this shows that dm(e,e)(X, 0) = X.

Doing the same calculation as above with εX on the right, dm(e,e)(0, X) = X.

Then by linearity, dm(e,e)(X, Y ) = X + Y .

(b) Let i : G → G be the inversion map. Letting f : G → G be the identity map, we
find that (m ◦ (f × i))(g) = e for any g ∈ G. Then this is a constant map and we
find that for X ∈ TeG, 0 = d(m ◦ (f × i))e(X) = dm(e,e)(dfeX, dieX) = X + dieX
by the chain rule and the fact that d(f × i) = df ×di. So we’ve shown dieX = −X.

7-4. (a) For A ∈ M(n,R), det(In + tA) is a polynomial in t, where the linear term is only
given by products of elements picked from the diagonal, of which (n− 1) must be
1’s and the other linear in t, so terms of the form 1 · · · 1 · tAjj · 1 · · · 1 = tAjj.

So the linear coefficient is
∑n

j=1A
j
j = tr(A). Then d

dt

∣∣
t=0

det(In + tA) = tr(A).

(b) For X ∈ GL(n,R) and B ∈ TXGL(n,R) ∼= M(n,R), let γ : (−ε, ε)→ GL(n,R) be
the curve defined by γ(t) = X + tB. Then γ(0) = X, γ′(0) = B, and

d(det)X(B) = (det ◦γ)′(0) =
d

dt

∣∣∣
t=0

det(X+tB) =
d

dt

∣∣∣
t=0

det(X) det(In+tX−1B) =

= det(X)
d

dt

∣∣∣
t=0

det(In + tX−1B) = det(X)tr(X−1B)

which is the desired result.



7-9. Define a map · : GL(n+ 1,R)× RPn → RPn by A · [x] = [Ax].

This is well defined: if [x] = [y], then x = cy for some c and Ax = cAy so [Ax] = [Ay].

This is a left action, because we have In · [x] = [Inx] = [x] and for A,B ∈ GL(n+ 1,R),
we have A · (B · [x]) = A · [Bx] = [A(Bx)] = [(AB)x] = (AB) · [x].

The action is transitive because for any nonzero x, y ∈ Rn+1 we may pick bases for
Rn+1, the first containing x and the second containing y, so that there is an invertible
linear map A in GL(n+ 1,R) carrying the first basis to the second and x to y.

Then A · [x] = [Ax] = [y]. So the action is transitive.

We check that the action is smooth in charts. Let Vi = {[x1, . . . , xn+1] : xi 6= 0} ⊆ RPn.
Then we have the charts ϕi : Vi → Rn : [x1, . . . , xn+1] 7→ 1

xi
(x1, . . . , xi−1, xi+1, . . . , xn+1)

which cover RPn and to satisfy one of our smoothness characterizations we have that
(GL(n+ 1,R)× Vj) ∩ (·)−1(Vi) = {(A, [x]) : xj 6= 0, (Ax)i 6= 0} is open.

We also have the inclusion i : GL(n+ 1,R) ↪→ M(n+ 1,R) ∼= R(n+1)2 of an open set
so that we have reduced to checking the smoothness of
ϕi ◦ (·) ◦ (i× ϕj)−1 : (i× ϕj) ((GL(n+ 1,R)× Vj) ∩ (·)−1(Vi))→ ϕi(Vi).

If we notate xj = 1, the formula for this is just (x1, . . . , xj−1, xj+1, . . . , xn+1) 7→
ϕi(A·[x1, . . . , xn+1]) = ϕi([A

1
kx

k, · · · , An+1
k xk]) = 1

Ai
kx

k

(
A1
kx

k, · · · , Ai−1k xk, Ai+1
k xk, · · · , An+1

k xk
)

(using Einstein summation) which is smooth wherever Aikx
k = (Ax)i 6= 0.

So we have shown that this is a smooth transitive left action.

7-11. Consider S2n+1 ⊆ Cn+1, and the action of S1 on S2n+1 by z·(w1, . . . , wn+1) = (zw1, · · · , zwn+1).

This action is smooth because it is the restriction of the smooth map
Cn+2 → Cn+1 : (z, w1, . . . , wn+1) 7→ (zw1, . . . , zwn+1) to domain and range embedded
submanifolds S1 × S2n+1 and S2n+1, which is smooth.

Now, the orbit through w = (w1, . . . , wn+1) is {(eiθw1, . . . , eiθwn+1) : θ ∈ [0, 2π)},
which is a unit circle in Cn+1 because |w| = 1.

Any two distinct orbits are disjoint, because if they share a point then the orbit gener-
ated by this point contains both orbits. Furthermore, there is such a unit circle orbit
through any point in S2n+1.

So the orbits split S2n+1 into a union of disjoint unit circles.


