Math 214, Homework 7.

Ex. 14.28. Recall the grad operator $\nabla: C^{\infty}\left(\mathbb{R}^{3}\right) \rightarrow \mathfrak{X}\left(\mathbb{R}^{3}\right)$, the curl operator $\nabla \times: \mathfrak{X}\left(\mathbb{R}^{3}\right) \rightarrow \mathfrak{X}\left(\mathbb{R}^{3}\right)$, and the divergence operator $\nabla \cdot: \mathfrak{X}\left(\mathbb{R}^{3}\right) \rightarrow C^{\infty}\left(\mathbb{R}^{3}\right)$. We also have the index-lowering isomorphism $b: \mathfrak{X}\left(\mathbb{R}^{3}\right) \rightarrow \Omega^{1}\left(\mathbb{R}^{3}\right)$ which sends $X^{i} \frac{\partial}{\partial x^{i}} \mapsto X^{i} \delta_{i j} d x^{j}$, the isomorphism $\beta: \mathfrak{X}\left(\mathbb{R}^{3}\right) \rightarrow \Omega^{2}\left(\mathbb{R}^{3}\right)$ sending $\left.X \mapsto X\right\lrcorner(d x \wedge d y \wedge d z)$ and the isomorphism $*: C^{\infty}\left(\mathbb{R}^{3}\right) \rightarrow \Omega^{3}\left(\mathbb{R}^{3}\right)$ sending $f \mapsto f d x \wedge d y \wedge d z$.
We want to show that the following diagram commutes:

We'll show the first and last squares for \mathbb{R}^{n}. To begin with:
Let $f \in C^{\infty}\left(\mathbb{R}^{n}\right)$. Then $b(\nabla f)=b\left(\sum_{i} \frac{\partial f}{\partial x^{i}} \frac{\partial}{\partial x^{i}}\right)=\frac{\partial f}{\partial x^{i}} \delta_{j}^{i} d x^{j}=\frac{\partial f}{\partial x^{j}} d x^{j}=d f$
So the first square commutes for \mathbb{R}^{n}, and in particular for \mathbb{R}^{3}.
For the last square, let $X=X^{j} \frac{\partial}{\partial x^{j}} \in \mathfrak{X}\left(\mathbb{R}^{n}\right)$.
Then $*(\nabla \cdot X)=*\left(\sum_{j} \frac{\partial X^{j}}{\partial x^{j}}\right)=\left(\sum_{j} \frac{\partial X^{j}}{\partial x^{j}}\right) \bigwedge_{k} d x^{k}$, while
$\left.d(\beta(X))=d(X\lrcorner \bigwedge_{k} d x^{k}\right)=d\left(\sum_{j}(-1)^{j+1} X^{j} d x^{1} \wedge \cdots \wedge d x^{j-1} \wedge d x^{j+1} \wedge \cdots \wedge d x^{n}\right)=$
$=\sum_{j}(-1)^{j+1} d X^{j} \wedge d x^{1} \wedge \cdots \wedge d x^{j-1} \wedge d x^{j+1} \wedge \cdots \wedge d x^{n}=\left(\sum_{j} \frac{\partial X^{j}}{\partial x^{j}}\right) \wedge_{k} d x^{k}$.
So the last square commutes for \mathbb{R}^{n}, and in particular for \mathbb{R}^{3}.

Finally, the middle square commutes for \mathbb{R}^{3}. Indeed, for $X \in \mathfrak{X}\left(\mathbb{R}^{3}\right)$ we compute:
$\beta(\nabla \times X)=\beta\left(\left(\frac{\partial X^{3}}{\partial y}-\frac{\partial X^{2}}{\partial z}\right) \frac{\partial}{\partial x}+\left(\frac{\partial X^{1}}{\partial z}-\frac{\partial X^{3}}{\partial x}\right) \frac{\partial}{\partial y}+\left(\frac{\partial X^{2}}{\partial x}-\frac{\partial X^{1}}{\partial y}\right) \frac{\partial}{\partial z}\right)=$
$=\left(\frac{\partial X^{3}}{\partial y}-\frac{\partial X^{2}}{\partial z}\right) d y \wedge d z-\left(\frac{\partial X^{1}}{\partial z}-\frac{\partial X^{3}}{\partial x}\right) d x \wedge d z+\left(\frac{\partial X^{2}}{\partial x}-\frac{\partial X^{1}}{\partial y}\right) d x \wedge d y$
while $d(b(X))=d\left(X^{1} d x+X^{2} d y+X^{3} d z\right)=$
$=\frac{\partial X^{1}}{\partial y} d y \wedge d x+\frac{\partial X^{1}}{\partial z} d z \wedge d x+\frac{\partial X^{2}}{\partial x} d x \wedge d y+\frac{\partial X^{2}}{\partial z} d z \wedge d y+\frac{\partial X^{3}}{\partial x} d x \wedge d z+\frac{\partial X^{3}}{\partial y} d y \wedge d z=$
$=\left(\frac{\partial X^{3}}{\partial y}-\frac{\partial X^{2}}{\partial z}\right) d y \wedge d z-\left(\frac{\partial X^{1}}{\partial z}-\frac{\partial X^{3}}{\partial x}\right) d x \wedge d z+\left(\frac{\partial X^{2}}{\partial x}-\frac{\partial X^{1}}{\partial y}\right) d x \wedge d y$
So the middle square commutes for \mathbb{R}^{3}, and the whole diagram commutes for \mathbb{R}^{3}.
In particular, since $d^{2}=0$ and the vertical maps are isomorphisms, hence invertible, for any $f \in C^{\infty}\left(\mathbb{R}^{3}\right)$ we have $\nabla \times(\nabla f)=0$ and for any $X \in \mathfrak{X}\left(\mathbb{R}^{3}\right)$ we have $\nabla \cdot(\nabla \times X)=0$.

7-2. Let G be a Lie group.
(a) Let $m: G \times G \rightarrow G$ be the multiplication map, and identify $T_{(e, e)}(G \times G)$ with $T_{e} G \oplus T_{e} G$. Let (U, φ) be a chart at $e \in G$ with $\varphi(0)=e$, so that $(U \times U, \varphi \times \varphi)$ is a chart at $(e, e) \in G \times G$. Then for $X \in \mathbb{R}^{n}$,

$$
\lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon} \varphi\left(m\left((\varphi \times \varphi)^{-1}(0+\varepsilon X, 0)\right)\right)=\lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon} \varphi\left(m\left(\varphi^{-1}(\varepsilon X), e\right)\right)=\lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon} \varphi\left(\varphi^{-1}(\varepsilon X)\right)=X
$$

Going back to G, this shows that $d m_{(e, e)}(X, 0)=X$.
Doing the same calculation as above with εX on the right, $d m_{(e, e)}(0, X)=X$.
Then by linearity, $d m_{(e, e)}(X, Y)=X+Y$.
(b) Let $i: G \rightarrow G$ be the inversion map. Letting $f: G \rightarrow G$ be the identity map, we find that $(m \circ(f \times i))(g)=e$ for any $g \in G$. Then this is a constant map and we find that for $X \in T_{e} G, 0=d(m \circ(f \times i))_{e}(X)=d m_{(e, e)}\left(d f_{e} X, d i_{e} X\right)=X+d i_{e} X$ by the chain rule and the fact that $d(f \times i)=d f \times d i$. So we've shown $d i_{e} X=-X$.

7-4. (a) For $A \in \mathrm{M}(n, \mathbb{R})$, $\operatorname{det}\left(I_{n}+t A\right)$ is a polynomial in t, where the linear term is only given by products of elements picked from the diagonal, of which $(n-1)$ must be 1's and the other linear in t, so terms of the form $1 \cdots 1 \cdot t A_{j}^{j} \cdot 1 \cdots 1=t A_{j}^{j}$.
So the linear coefficient is $\sum_{j=1}^{n} A_{j}^{j}=\operatorname{tr}(A)$. Then $\left.\frac{d}{d t}\right|_{t=0} \operatorname{det}\left(I_{n}+t A\right)=\operatorname{tr}(A)$.
(b) For $X \in \mathrm{GL}(n, \mathbb{R})$ and $B \in T_{X} \mathrm{GL}(n, \mathbb{R}) \cong \mathrm{M}(n, \mathbb{R})$, let $\gamma:(-\varepsilon, \varepsilon) \rightarrow \mathrm{GL}(n, \mathbb{R})$ be the curve defined by $\gamma(t)=X+t B$. Then $\gamma(0)=X, \gamma^{\prime}(0)=B$, and

$$
\begin{aligned}
d(\operatorname{det})_{X}(B)= & (\operatorname{det} \circ \gamma)^{\prime}(0)=\left.\frac{d}{d t}\right|_{t=0} \operatorname{det}(X+t B)=\left.\frac{d}{d t}\right|_{t=0} \operatorname{det}(X) \operatorname{det}\left(I_{n}+t X^{-1} B\right)= \\
& =\left.\operatorname{det}(X) \frac{d}{d t}\right|_{t=0} \operatorname{det}\left(I_{n}+t X^{-1} B\right)=\operatorname{det}(X) \operatorname{tr}\left(X^{-1} B\right)
\end{aligned}
$$

which is the desired result.

7-9. Define a map $\cdot: \operatorname{GL}(n+1, \mathbb{R}) \times \mathbb{R}^{P^{n}} \rightarrow \mathbb{R}^{n}$ by $A \cdot[x]=[A x]$.
This is well defined: if $[x]=[y]$, then $x=c y$ for some c and $A x=c A y$ so $[A x]=[A y]$.
This is a left action, because we have $I_{n} \cdot[x]=\left[I_{n} x\right]=[x]$ and for $A, B \in \operatorname{GL}(n+1, \mathbb{R})$, we have $A \cdot(B \cdot[x])=A \cdot[B x]=[A(B x)]=[(A B) x]=(A B) \cdot[x]$.
The action is transitive because for any nonzero $x, y \in \mathbb{R}^{n+1}$ we may pick bases for \mathbb{R}^{n+1}, the first containing x and the second containing y, so that there is an invertible linear map A in $\operatorname{GL}(n+1, \mathbb{R})$ carrying the first basis to the second and x to y.
Then $A \cdot[x]=[A x]=[y]$. So the action is transitive.
We check that the action is smooth in charts. Let $V_{i}=\left\{\left[x^{1}, \ldots, x^{n+1}\right]: x^{i} \neq 0\right\} \subseteq \mathbb{R} \mathbb{P}^{n}$. Then we have the charts $\varphi_{i}: V_{i} \rightarrow \mathbb{R}^{n}:\left[x^{1}, \ldots, x^{n+1}\right] \mapsto \frac{1}{x^{i}}\left(x^{1}, \ldots, x^{i-1}, x^{i+1}, \ldots, x^{n+1}\right)$ which cover $\mathbb{R} \mathbb{P}^{n}$ and to satisfy one of our smoothness characterizations we have that $\left(\mathrm{GL}(n+1, \mathbb{R}) \times V_{j}\right) \cap(\cdot)^{-1}\left(V_{i}\right)=\left\{(A,[x]): x^{j} \neq 0,(A x)^{i} \neq 0\right\}$ is open.
We also have the inclusion $i: \operatorname{GL}(n+1, \mathbb{R}) \hookrightarrow \mathrm{M}(n+1, \mathbb{R}) \cong \mathbb{R}^{(n+1)^{2}}$ of an open set so that we have reduced to checking the smoothness of $\varphi_{i} \circ(\cdot) \circ\left(i \times \varphi_{j}\right)^{-1}:\left(i \times \varphi_{j}\right)\left(\left(\mathrm{GL}(n+1, \mathbb{R}) \times V_{j}\right) \cap(\cdot)^{-1}\left(V_{i}\right)\right) \rightarrow \varphi_{i}\left(V_{i}\right)$.
If we notate $x^{j}=1$, the formula for this is just $\left(x^{1}, \ldots, x^{j-1}, x^{j+1}, \ldots, x^{n+1}\right) \mapsto$ $\varphi_{i}\left(A \cdot\left[x^{1}, \ldots, x^{n+1}\right]\right)=\varphi_{i}\left(\left[A_{k}^{1} x^{k}, \cdots, A_{k}^{n+1} x^{k}\right]\right)=\frac{1}{A_{k}^{2} x^{k}}\left(A_{k}^{1} x^{k}, \cdots, A_{k}^{i-1} x^{k}, A_{k}^{i+1} x^{k}, \cdots, A_{k}^{n+1} x^{k}\right)$ (using Einstein summation) which is smooth wherever $A_{k}^{i} x^{k}=(A x)^{i} \neq 0$.
So we have shown that this is a smooth transitive left action.

7-11. Consider $\mathbb{S}^{2 n+1} \subseteq \mathbb{C}^{n+1}$, and the action of \mathbb{S}^{1} on $\mathbb{S}^{2 n+1}$ by $z \cdot\left(w^{1}, \ldots, w^{n+1}\right)=\left(z w^{1}, \cdots, z w^{n+1}\right)$. This action is smooth because it is the restriction of the smooth map $\mathbb{C}^{n+2} \rightarrow \mathbb{C}^{n+1}:\left(z, w^{1}, \ldots, w^{n+1}\right) \mapsto\left(z w^{1}, \ldots, z w^{n+1}\right)$ to domain and range embedded submanifolds $\mathbb{S}^{1} \times \mathbb{S}^{2 n+1}$ and $\mathbb{S}^{2 n+1}$, which is smooth.
Now, the orbit through $w=\left(w^{1}, \ldots, w^{n+1}\right)$ is $\left\{\left(e^{i \theta} w^{1}, \ldots, e^{i \theta} w^{n+1}\right): \theta \in[0,2 \pi)\right\}$, which is a unit circle in \mathbb{C}^{n+1} because $|w|=1$.
Any two distinct orbits are disjoint, because if they share a point then the orbit generated by this point contains both orbits. Furthermore, there is such a unit circle orbit through any point in $\mathbb{S}^{2 n+1}$.
So the orbits split $\mathbb{S}^{2 n+1}$ into a union of disjoint unit circles.

